Cognitive Computation

, Volume 3, Issue 1, pp 37–47 | Cite as

Medium Spatial Frequencies, a Strong Predictor of Salience

  • Fabrice Urban
  • Brice Follet
  • Christel Chamaret
  • Olivier Le Meur
  • Thierry Baccino
Article

Abstract

The extent to which so-called low-level features are relevant to predict gaze allocation has been widely studied recently. However, the conclusions are contradictory. Edges and luminance contrasts seem to be always involved, but literature is conflicting about contribution of the different spatial scales. It appears that experiments using man-made scenes lead to the conclusion that fixation location can be efficiently discriminated using high-frequency information, whereas mid- or low frequencies are more discriminative for natural scenes. This paper focuses on the importance of spatial scale to predict visual attention. We propose a fast attentional model and study which frequency band predicts the best fixation locations during free-viewing task. An eye-tracking experiment has been conducted using different scene categories defined by their Fourier spectrums (Coast, OpenCountry, Mountain, and Street). We found that medium frequencies (0.7–1.3 cycles per degree) globally allowed the best prediction of attention, with variability among categories. Fixation locations were found to be more predictable using medium to high frequencies in man-made street scenes and low to medium frequencies in natural landscape scenes.

Keywords

Attention Saliency map Bottom up Scene category Computational modeling Eye tracking 

References

  1. 1.
    Itti L, Koch C, Niebur E. Model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20(11):1254–9.CrossRefGoogle Scholar
  2. 2.
    Reinagel P, Zador AM. Natural scene statistics at the centre of gaze. Comput Neural Syst. 1999;10:1–10.CrossRefGoogle Scholar
  3. 3.
    Baddeley RJ, Tatler BW. High frequency edges (but not contrast) predict where we fixate: a Bayesian system identification analysis. Vis Res. 2006;46(18):2824–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Parkhurst D, Law K, Niebur E. Modeling the role of salience in the allocation of overt visual attention. Vis Res. 2002;42:107–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Tatler BW, Baddeley RJ, Gilchrist ID. Visual correlates of fixation selection: effects of scale and time. Vis Res. 2005;45:643–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Bruce NDB, Loach DP, Tsotsos JK. Visual correlates of fixation selection: a look at the spatial frequency domain. In: International conference on image processing. 2007.Google Scholar
  7. 7.
    Açik A, Onat S, Schumann F, Einhäuser W, König P. Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories. Vis Res. 2009;49(12):1541–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Billock VA. Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system. Phys D Nonlinear Phenom. 2000;137(3–4):379–91.CrossRefGoogle Scholar
  9. 9.
    Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381:520–2.PubMedCrossRefGoogle Scholar
  10. 10.
    Mermillod M, Guyader N, Chauvin A. The coarse-to-fine hypothesis revisited: evidence from neuro-computational modeling. Brain Cogn. 2005;57(2):151–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Séré B, Marendaz C, Hérault J. Nonhomogeneous resolution of images of natural scenes. Perception. 2000;29:1403–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Schyns P, Oliva A. From blobs to boundary edges: evidence for time- and spatial-scale-dependent scene recognition. Psychol Sci. 1994;5:195–200.CrossRefGoogle Scholar
  13. 13.
    Hedgé J. Time course of visual perception: coarse-to-fine perception and beyond. Prog Neurobiol. 2008;84:405–39.CrossRefGoogle Scholar
  14. 14.
    Torralba A, Oliva A. Statistics of natural image categories. Comput Neural Syst. 2003;14:391–412.CrossRefGoogle Scholar
  15. 15.
    Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–27.PubMedGoogle Scholar
  16. 16.
    Le Meur O, Le Callet P. What we see is most likely to be what matters: visual attention and applications. In: International conference on image processing. 2009. p. 3085–3088.Google Scholar
  17. 17.
    Le Meur O, Le Callet P, Barba D, Thoreau D. A coherent computational approach to model the bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell. 2006;28(5):802–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Senane H, Saadane A, Barba D. Image coding in the context of a psychovisual image representation with vector quantization. In: ICIP’95. 1995. p. 97–100.Google Scholar
  19. 19.
    Watson AB. The cortex transform: rapid computation of simulated neural images. Comput Vis Graph Image Process. 1987;39:311–27.CrossRefGoogle Scholar
  20. 20.
    Le Meur O, Le Callet P, Barba D. Predicting visual fixations on video based on low-level visual features. Vis Res. 2007;47(19):2483–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Ouerhani N, Jost T, Bur A, Hugli H. Cue normalization schemes in saliency-based visual attention models. In: International cognitive vision workshop. 2006.Google Scholar
  22. 22.
    Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis. 2007;7(14):1–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Oliva A. Gist of the scene. In: Itti L, Rees G, Tsotsos JK, editors. The encyclopedia of neurobiology of attention. Dordrecht: Elsevier; 2005. p. 251–6.CrossRefGoogle Scholar
  24. 24.
    Rayner K. Eye movements in reading and information processing: 20 years of research. Psychol Bull. 1998;124(3):372–422.PubMedCrossRefGoogle Scholar
  25. 25.
    Peters R, Iyer A, Itti L, Koch C. Components of bottom-up gaze allocation in natural images. Vis Res. 2005;45:2397–416.PubMedCrossRefGoogle Scholar
  26. 26.
    Bruce NDB, Tsotsos JK. Saliency based on information maximization. In: Advances in neural information processing systems. 2006. p. 155–162.Google Scholar
  27. 27.
    Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW. SUN: a Bayesian framework for saliency using natural statistics. J Vis [Internet]. 2008;8(7). Available from: http://www.journalofvision.org/content/8/7/32.abstract.
  28. 28.
    Mannam SK, Ruddock KH, Wooding DS. Automatic control of saccadic eye movements made in visual inspection of briefly presented 2D images. Spatial Vis. 1995;9:363–86.CrossRefGoogle Scholar
  29. 29.
    Bruce NDB. Features that draw visual attention: an information theoretic perspective. Neurocomputing. 2005;65–66:125–33.CrossRefGoogle Scholar
  30. 30.
    Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev. 2006;113(4):766–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Navalpakkam V, Itti L. Modeling the influence of task on attention. Vis Res. 2005;45(2):205–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fabrice Urban
    • 1
  • Brice Follet
    • 1
    • 3
  • Christel Chamaret
    • 1
  • Olivier Le Meur
    • 2
  • Thierry Baccino
    • 3
  1. 1.Technicolor Research and Innovation, Video Processing and Perception LabCesson Sévigné CEDEXFrance
  2. 2.Université de Rennes 1, Campus Univ. de BeaulieuRENNES CedexFrance
  3. 3.LUTIN (UMS-CNRS 2809), Cité des sciences et de l’industrie de la VilletteParisFrance

Personalised recommendations