Cognitive Computation

, Volume 3, Issue 1, pp 279–293 | Cite as

A Dynamic Neural Field Approach to the Covert and Overt Deployment of Spatial Attention

  • Jeremy FixEmail author
  • Nicolas Rougier
  • Frederic Alexandre


The visual exploration of a scene involves the interplay of several competing processes (for example to select the next saccade or to keep fixation) and the integration of bottom-up (e.g. contrast) and top-down information (the target of a visual search task). Identifying the neural mechanisms involved in these processes and in the integration of these information remains a challenging question. Visual attention refers to all these processes, both when the eyes remain fixed (covert attention) and when they are moving (overt attention). Popular computational models of visual attention consider that the visual information remains fixed when attention is deployed while the primates are executing around three saccadic eye movements per second, changing abruptly this information. We present in this paper a model relying on neural fields, a paradigm for distributed, asynchronous and numerical computations and show that covert and overt attention can emerge from such a substratum. We identify and propose a possible interaction of four elementary mechanisms for selecting the next locus of attention, memorizing the previously attended locations, anticipating the consequences of eye movements and integrating bottom-up and top-down information in order to perform a visual search task with saccadic eye movements.


Visual attention Eye movements Dynamic neural fields Emergence 


  1. 1.
    Ballard D, Hayhoe M, Pook P, Rao R. Deictic codes for the embodiment of cognition. Behav Brain Sci. 1997;20(4): 723–42; discussion 743–67.Google Scholar
  2. 2.
    Alexandre F. Cortical basis of communication: local computation, coordination, attention. Neural Netw. 2009;22(2):126–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Findlay J, Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci. 1999;22(4):661–74.PubMedGoogle Scholar
  4. 4.
    Kramer A, Irwin D, Theeuwes J, Hahn S. Oculomotor capture by abrupt onsets reveals concurrent programming of voluntary and involuntary saccades. Behav Brain Sci. 1999;22:689–90.CrossRefGoogle Scholar
  5. 5.
    Godijn R, Theeuwes J. Programming of endogenous and exogenous saccades: evidence for a competitive integration model. J Exp Psychol Hum Percept Perform. 2002;28(5):1039–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Isa T Intrinsic processing in the mammalian superior colliculus. Curr Opin Neurobiol. 2002;12(6):668–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–27.PubMedGoogle Scholar
  8. 8.
    Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci. 2001;2(3):194–203.PubMedCrossRefGoogle Scholar
  9. 9.
    Cutsuridis V. A cognitive model of saliency, attention, and picture scanning. Cogn Comput. 2009;1:292–99.CrossRefGoogle Scholar
  10. 10.
    Trappenberg T, Dorris M, Munoz D, Klein R. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci. 2001;13(2):256–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Schneider S, Erlhagen W. A neural field model for saccade planning in the superior colliculus: speed-accuracy tradeoff in the double-target paradigm. Neurocomputing. 2002;44–46:623–28.CrossRefGoogle Scholar
  12. 12.
    Johnson J, Spencer J, Schoner G. Moving to higher ground: The dynamic field theory and the dynamics of visual cognition. New Ideas Psychol. 2008;26(2):227–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Faubel C, Schoner G. Learning to recognize objects on the fly: a neurally based dynamic field approach. Neural Netw. 2008;21(4):562–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Deco G, Rolls E. A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res. 2004;44(6):621–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Rougier N, Fix J. Dana,distributed asynchronous numerical and adaptive modeling framework Frontiers in Neuroinformatics submitted.Google Scholar
  16. 16.
    Goodale M, Milner A. Separate visual pathways for perception and action. Trends Neurosci. 1992;15(1):20–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Reynolds J, Chelazzi L. Attentional modulation of visual processing. Annu Rev Neurosci. 2004;27:611–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Posner M, Cohen Y. Attention and performance X, Lawrence Epblaum Associates, 1984, Ch. Components of visual orienting, pp. 531–56Google Scholar
  19. 19.
    Wilson H, Cowan J. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13(2):55–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Amari S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 1977;27(2):77–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor J. Neural bubble dynamics in two dimensions. Biol Cybern. 1999;80:5167–74.CrossRefGoogle Scholar
  22. 22.
    Coombes S. Waves, bumps, and patterns in neural field theories. Biol Cybern. 2005;93(2):91–108.PubMedCrossRefGoogle Scholar
  23. 23.
    Erlhagen W, Schoener G. Dynamic field theory of movement preparation. Psychol Rev. 2002;109(3):545–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Erlhagen W, Bicho E (2006) The dynamic neural field approach to cognitive robotics. J Neural Eng 3(3):R36–54PubMedCrossRefGoogle Scholar
  25. 25.
    Rougier N, Vitay J. Emergence of attention within a neural population. Neural Netw. 2006;19(5):573–81.CrossRefGoogle Scholar
  26. 26.
    Sauser E, Billard A. Dynamic updating of distributed neural representations using forward models. Biol Cybern. 2006;95(6):567–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Gurney K, Prescott T, Redgrave P. A computational model of action selection in the basal ganglia. i. a new functional anatomy. Biol Cybern. 2001;84(6):401–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Vitay J, Rougier N. Using neural dynamics to switch attention, in: International Joint Conference on Neural Networks (IJCNN 2005) (2005).Google Scholar
  29. 29.
    Kopecz K, Schoner G. Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields. Biol Cybern. 1995;73(1):49–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson J, Spencer J, Luck S, Schoner G. A dynamic neural field model of visual working memory and change detection. Psychol Sci. 2009;20(5):568–77.PubMedCrossRefGoogle Scholar
  31. 31.
    Fix J, Vitay J, Rougier N. A distributed computational model of spatial memory anticipation during a visual search task. In: Butz M, Sigaud O, Baldassarre G, Pezzulo G (eds) Anticipatory Behavior in Adaptive Learning Systems: From Brains to Individual and Social Behavior, Vol. 4520 of LNCS. Springer, 2007;pp. 170–88.Google Scholar
  32. 32.
    Alexandre F, Guyot F. Neurobiological inspiration for the architecture and functioning of cooperating neural networks. In: IWANN 1995, 1995;pp. 24–30.Google Scholar
  33. 33.
    Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci. 1996;16(6):2112–26.PubMedGoogle Scholar
  34. 34.
    Pouget A, Sejnowski T. Spatial transformations in the parietal cortex using basis functions. J Cogn Neurosci. 1997;9:222–37.CrossRefGoogle Scholar
  35. 35.
    Andersen R, Essick G, Siegel R. Encoding of spatial location by posterior parietal neurons. Science. 1985;230(4724):456–8PubMedCrossRefGoogle Scholar
  36. 36.
    Salinas E, Thier P. Gain modulation: a major computational principle of the central nervous system. Neuron. 2000;27(1):15–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Stringer S, Trappenberg T, Rolls E, Araujo I. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Netw Comput Neural Syst. 2002;13(2):217–42.Google Scholar
  38. 38.
    Stringer S, Rolls E, Trappenberg T. Self-organizing continuous attractor networks with multiple activity packets, and the representation of space. Neural Netw. 2004;17:5–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Weber C, Wermeter S. A self-organizing map of sigma-pi units. Neurocomputing. 2007;70:2552–60.CrossRefGoogle Scholar
  40. 40.
    Tononi G, Sporns O, Edelman G. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex. 1992;2(4):310–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Hamker F. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb Cortex. 2005;15(4):431–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Deco G, Lee T. A unified model of spatial and object attention based on inter-cortical biased competition. Neurocomputing. 2002;44-46:775–81.CrossRefGoogle Scholar
  43. 43.
    Hamker F. The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Comput Vis Image Underst. 2005;100:64–106.CrossRefGoogle Scholar
  44. 44.
    Frintrop S. VOCUS: A Visual Attention System for Object Detection and Goal-directed Search, Vol. 3899 of Lecture Notes in Computer Science, Springer; 2006.Google Scholar
  45. 45.
    Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.PubMedCrossRefGoogle Scholar
  46. 46.
    Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229(4715):782–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Desimone R, Duncan J. Neural mechanisms of selective visual attention. Ann Rev Neurosci. 1995;18:193–222.PubMedCrossRefGoogle Scholar
  48. 48.
    Reynolds J, Chelazzi L, Desimone R. Competitive mechanisms subserve attention in macaque areas v2 and v4. J Neurosci. 1999;19(5):1736–53.PubMedGoogle Scholar
  49. 49.
    Shipp S. The brain circuitry of attention. Trends Cogn Sci. 2004;8(5):223–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Lynch J, Tian J-R. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res. 2005;151:461–501.CrossRefGoogle Scholar
  51. 51.
    Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80(3):953–78.PubMedGoogle Scholar
  52. 52.
    Robinson D, Petersen S. The pulvinar and visual salience. Trends Neurosci. 1992;15(4):127–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhaoping L. A saliency map in primary visual cortex. Trends Cogn Sci. 2002;6(1):9–16.CrossRefGoogle Scholar
  54. 54.
    Gottlieb J, Kusunoki M, Goldberg M. The representation of visual salience in monkey parietal cortex. Nature. 1998;391(6666):481–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Thompson K, Bichot N. A visual salience map in the primate frontal eye field. Prog Brain Res. 2005;147:251–62.PubMedGoogle Scholar
  56. 56.
    Rockland K, VanHoesen G. Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb Cortex. 1994;4(3):300–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Moore T, Armstrong K. Selective gating of visual signals by microstimulation of frontal cortex. Nature. 2003;421(6921):370–3.PubMedCrossRefGoogle Scholar
  58. 58.
    Hikosaka O. Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci. 2007;1104:229–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Funahashi S, Bruce C, Goldman-Rakic P. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J of Neurophysiol. 1999;61(2):331–49.Google Scholar
  60. 60.
    Constantinidis C, Wang X. A neural circuit basis for spatial working memory. Neuroscientist. 2004;10(6):553–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Watanabe Y, Funahashi S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. cue-, delay- and response-period activity. J Neurophysiol. 2004;92(3):1738–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Watanabe Y, Funahashi S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. II. Activity encoding visual versus motor signal. J Neurophysiol. 2004;92(3):1756–69.PubMedCrossRefGoogle Scholar
  63. 63.
    Sommer M, Wurtz R. Influence of the thalamus on spatial visual processing in frontal cortex. Nature. 2006;444(7117):374–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Duhamel J, Colby C, Goldberg M. The updating of the representation of visual space in parietal cortex by intended eye movements. Science. 1992;255(5040):90–2.PubMedCrossRefGoogle Scholar
  65. 65.
    Quaia C, Optican L, Goldberg M. The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Netw. 1998;11(7–8):1229–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Rizzolatti G, Riggio L, Dascola I, Umiltá C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia. 1987;25(1A):31–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jeremy Fix
    • 1
    Email author
  • Nicolas Rougier
    • 2
  • Frederic Alexandre
    • 2
  1. 1.SUPELECMetzFrance
  2. 2.INRIA Nancy - Grand Est research centerVillers les Nancy CedexFrance

Personalised recommendations