Cognitive Computation

, Volume 3, Issue 1, pp 321–331 | Cite as

Selective Attention and Consciousness: Investigating Their Relation Through Computational Modelling

  • Kleanthis C. Neokleous
  • Marios N. Avraamides
  • Costas K. Neocleous
  • Christos N. Schizas
Article

Abstract

The present study aimed at investigating the possible connection between conscious awareness and attention through the implementation of a neurocomputational model of visual selective attention. The development of the model was based on recent neurophysiological findings that document the synchronization of neural activity in cortical areas of the brain and the presence of competitive interactions among stimuli at the early stages of visual processing. The model was used to simulate the findings of a behavioural experiment conducted by Naccache et al. in Psychol Sci 13:416–424 (2002), which have sparked a debate on the possible links between attention and consciousness. The model reproduced closely the pattern of the behavioural data while incorporating mechanisms that take into account the neural activity representing the early visual processing of stimuli and the effects of top–down attention. Thus, by adopting a computational approach, we present a possible explanation of the findings at the neural level of information processing. The implications of these findings for the relation between attentional processes and conscious awareness are discussed.

Keywords

Spiking neural networks Visual selective attention Consciousness 

Notes

Acknowledgments

This research is funded by grant 0308(BE)/16 from the Cyprus Research Promotion Foundation.

References

  1. 1.
    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Buschman TJ, Miller EK. Top-downversus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;30:1860–2.CrossRefGoogle Scholar
  3. 3.
    Beck DM, Kastner S. Stimulus context modulates competition in human extrastriate cortex. Nat Neurosci. 2005;8:1110–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Fukuda K, Vogel EK. Human variation in overriding attentional capture. J Neurosci. 2009;29:8726–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Grossberg S. How does a brain build a cognitive code? Psych Rev. 1980;87:1–51.CrossRefGoogle Scholar
  6. 6.
    Grossberg S. The link between brain learning, attention, and consciousness. Consci Cogn. 1999;8:1–44.CrossRefGoogle Scholar
  7. 7.
    Jackendoff R. How language helps us think. Pragmat Cogn. 1996;4:1–34.CrossRefGoogle Scholar
  8. 8.
    O’Regan JK, Noe A. A sensorimotor account of vision and visual consciousness. Behav Brain Sci. 2001;24:939–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Posner MI. Attention: the mechanisms of consciousness. Proc Natl Acad Sci USA. 1994;9:7398–403.CrossRefGoogle Scholar
  10. 10.
    Velmans M. The science of consciousness. London: Routledge; 1996.CrossRefGoogle Scholar
  11. 11.
    Bachmann T. A single metatheoretical framework for a number of conscious-vision phenomena. In: Jing Q, editor. Psychological science around the world. Sussex: Psychology Press; 2006. p. 229–42.Google Scholar
  12. 12.
    Lamme VA. Why visual attention and awareness are different. Trends Cogn Sci. 2003;7:12–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Koch C, Tsuchiya N. Attention and consciousness: two distinct brain processes. Trends Cogn Sci. 2006;11(1):16–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Mack A, Rock I. Inattentional blindness. Cambridge, MA: MIT Press; 1998.Google Scholar
  15. 15.
    Simons DJ, Rensick RA. Change blindness: past, present, and future. Trends Cogn Sci. 2005;9:16–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Sperling G, Dosher B. Strategy and optimization in human information processing. In: Handbook of perception and human performance. 1986. p. 1–65.Google Scholar
  17. 17.
    Braun J, Julesz B. Withdrawing attention at little or no cost: detection and discrimination tasks. Percept Psychophys. 1998;60:1–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Raymond JE, Shapiro KL, Arnell KM. Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psyc Human Perc Perform. 1992;18(3):849–60.CrossRefGoogle Scholar
  19. 19.
    Naccache L, Blandin E, Dehaene S. Unconscious masked priming depends on temporal attention. Psychol Sci. 2002;13:416–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Reynolds JH, Desimone R. Interacting roles of attention and visual salience in V4. Neuron. 2003;37:853–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229:782–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Neokleous CK, Avraamides MN, Schizas CN. Computational modeling of visual selective attention based on correlation and synchronization of neural activity. In: Iliadis L, Vlahavas I, Bramer M, editors. Artificial intelligence applications and innovations III. Boston: Springer; 2009. p. 215–23.CrossRefGoogle Scholar
  23. 23.
    Neokleous CK, Avraamides NM, Neocleous KC, Schizas NC. A neural network computational model of visual selective attention. Eng Intell Syst J. 2010; (in press).Google Scholar
  24. 24.
    Neokleous KC, Koushiou M, Avraamides NM, Schizas NC. A coincidence detector neural network model of selective attention. In: Proceedings of the 31st annual meeting of the cognitive science society. 2009. The Netherlands: Amsterdam.Google Scholar
  25. 25.
    Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008;9:206–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Poghosyan V, Ioannides AA. Attention modulates earliest responses in the primary auditory and visual cortices. Neuron. 2008;58:802–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Silver MA, Ress D, Heeger DJ. Neural correlates of sustained spatial attention in human early visual cortex. J Neurophysiol. 2007;97:229–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Shibata K, Yamagishi N, Goda N, Yoshioka T, Yamashita O, Sato MA, et al. The effects of feature attention on prestimulus cortical activity in the human visual system. Cereb Cortex. 2008;18:1664–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Sillito MA, Grieve KL, Jones HE, Cudeiro J, Davis J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature. 1995;378:492–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Nothdurft HC, Gallant JL, Van Essen DC. Response modulation by texture surround in primate area V1: correlates of popout under anesthesia. Vis Neurosci. 1999;16:15–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Wachtler T, Sejnowski TJ, Albright TD. Representation of color stimuli in awake macaque primary visual cortex. Neuron. 2003;37(4):681–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Knierim JJ, Van Essen DC. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol. 1992;67(4):961–80.PubMedGoogle Scholar
  33. 33.
    Jones HE, Grieve KL, Wang W, Sillito MA. Surround suppression in primate V1. J Neurophysiol. 2001;86:2011–28.PubMedGoogle Scholar
  34. 34.
    Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–27.PubMedGoogle Scholar
  35. 35.
    Walther D, Koch C. Modeling attention to salient proto-objects. Neural Netw. 2006;19:1395–407.PubMedCrossRefGoogle Scholar
  36. 36.
    Jonides J, Yantis S. Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys. 1988;43:346–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Corbetta M, Patel G, Shulman LG. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–24.PubMedCrossRefGoogle Scholar
  38. 38.
    VanRullen R. Visual saliency and spike timing in the ventral visual pathway. J Physiol Paris. 2003;97(2–3):365–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Crick F, Koch C. Towards a neurobiological theory of consciousness. Semin Neurosci. 1990;2:263–75.Google Scholar
  40. 40.
    Connor CE, Gallant JL, Preddie DC, VanEssen DC. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996;75:1306–8.PubMedGoogle Scholar
  41. 41.
    Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993;363:345–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Gruber T, Muller MM, Keil A, Elbert T. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol. 1999;110:2074–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001;291:1560–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. PNAS USA. 2004;101:13050–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Niebur E, Hsiao SS, Johnson KO. Synchrony: a neuronal mechanism for attentional selection? Curr Opin Neurol. 2002;12:190–4.CrossRefGoogle Scholar
  46. 46.
    Saalmann YB, Pigarev IN, Vidyasagar TR. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science. 2007;316:1612–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Gregoriou G, Gotts S, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 2009;324:1207–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Grossberg S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat Vis. 1999;12:163–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Dehaene S, Sergent C, Changeux JP. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA. 2003;100:8520–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nature. 2001;2:704–16.Google Scholar
  51. 51.
    Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316(5831):1578–9.CrossRefGoogle Scholar
  52. 52.
    Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA. 2006;103:10046–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Ogawa T, Komatsu H. Target selection in area V4 during a multidimensional visual search task. J Neurosci. 2004;24:6371–82.PubMedCrossRefGoogle Scholar
  54. 54.
    Reynolds JH, Desimone R. Interacting roles of attention and visual salience in V4. Neuron. 2003;37:853–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Treue S. Visual attention: the where, what, how and why of saliency. Curr Opin Neurobiol. 2003;13:428–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Mole C. Attention in the absence of consciousness? Trends Cogn Sci. 2008;12:43–4.CrossRefGoogle Scholar
  57. 57.
    Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 2006;10:204–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. 2001;79:1–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Moutoussis K, Zeki S. The relationship between cortical activation and perception investigated with invisible stimuli. Proc Natl Acad Sci USA. 2002;99:9527–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Marois R, Yi DJ, Chun MM. The neural fate of consciously perceived and missed events in the attentional blink. Neuron. 2004;41:465–72.PubMedCrossRefGoogle Scholar
  61. 61.
    Sergent C, Baillet S, Dehaene S. Timing of the brain events underlying access to consiousness during the attentional blink. Nat Neurosci. 2005;8(10):1391–400.PubMedCrossRefGoogle Scholar
  62. 62.
    VanRullen R, Koch C. Visual selective behaviour can be triggered by a feed-forward process. J Cogn Neurosci. 2003;15:209–17.PubMedCrossRefGoogle Scholar
  63. 63.
    Lamme VA. Why visual attention and awareness are different. Trends Cogn Sci. 2003;7(1):12–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Taylor JG. Paying attention to consciousness. Prog Neurobiol. 2003;71:305–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Taylor JG. CODAM: a neural network model of consciousness. Neural Netw. 2007;20(9):983–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kleanthis C. Neokleous
    • 1
  • Marios N. Avraamides
    • 2
  • Costas K. Neocleous
    • 3
  • Christos N. Schizas
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  2. 2.Department of PsychologyUniversity of CyprusNicosiaCyprus
  3. 3.Department of Mechanical Engineering and Materials Science and EngineeringCyprus University of TechnologyNicosiaCyprus

Personalised recommendations