Advertisement

Cognitive Computation

, Volume 3, Issue 1, pp 25–36 | Cite as

Salience in Paintings: Bottom-Up Influences on Eye Fixations

  • Isabella Fuchs
  • Ulrich Ansorge
  • Christoph Redies
  • Helmut Leder
Article

Abstract

In the current study, we investigated whether visual salience attracts attention in a bottom-up manner. We presented abstract and depictive paintings as well as photographs to naïve participants in free-viewing (Experiment 1) and target-search (Experiment 2) tasks. Image salience was computed in terms of local feature contrasts in color, luminance, and orientation. Based on the theories of stimulus-driven salience effects on attention and fixations, we expected salience effects in all conditions and a characteristic short-lived temporal profile of the salience-driven effect on fixations. Our results confirmed the predictions. Results are discussed in terms of their potential implications.

Keywords

Visual attention Salience Eye movements Art perception 

Notes

Acknowledgments

We would like to thank our Reviewers for valuable comments on an earlier version of this manuscript. Furthermore, we thank Elisa Tersteegen and Helmut Perrelli for their support in data collection, as well as Joachim Denzler and Michael Koch for kindly providing the programs for the Fourier power spectra analyses.

References

  1. 1.
    Posner MI. Orienting of attention. Q J Exp Psychol. 1980;32:3–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Theeuwes J. Perceptual selectivity for color and form. Percept Psychophys. 1992;51:599–606.PubMedCrossRefGoogle Scholar
  3. 3.
    Bashinski HS, Bacharach VR. Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Percept Psychophys. 1980;28:241–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Müller HJ, Rabbitt PMA. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform. 1989;15:315–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Neumann O. Beyond capacity: a functional view of attention. In: Heuer H, Sanders AF, editors. Perspectives on perception and action. Hillsdale, NJ: Erlbaum; 1987. p. 361–94.Google Scholar
  6. 6.
    Allport A. Selection for action: some behavioral and neurophysiological considerations of attention and action. In: Heuer H, Sander AF, editors. Perspectives on perception and action. Hillsdale, NJ: Erlbaum; 1987. p. 395–419.Google Scholar
  7. 7.
    Deubel H, Schneider WX. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res. 1996;36:1827–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Rizzolatti G, Riggio L, Sheliga BM. Space and selective attention. In: Umiltà C, Moscovitch M, editors. Attention and performance, XV: conscious and nonconscious information processing. Cambridge, MA: MIT Press; 1994.Google Scholar
  9. 9.
    Henderson JM. Regarding scenes. Curr Dir Psychol Sci. 2007;16:219–22.CrossRefGoogle Scholar
  10. 10.
    Rayner K. Eye movements in reading and information processing: 20 years of research. Psychol Bull. 1998;124:372–422.PubMedCrossRefGoogle Scholar
  11. 11.
    Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci. 2001;2:194–203.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Zoest W, Donk M, Theeuwes J. The role of stimulus-driven and goal-driven control in visual selection. J Exp Psychol Hum Percept Perform. 2004;30:746–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Bergen JR, Julesz B. Parallel vs. serial processing in rapid pattern discrimination. Nat Rev Neurosci. 1983;303:696–8.CrossRefGoogle Scholar
  14. 14.
    Theeuwes J. Top-down and bottom-up control of visual selection. Acta Psychol (Amst). in press.Google Scholar
  15. 15.
    Bacon WF, Egeth HE. Overriding stimulus-driven attentional capture. Percept Psychophys. 1994;55:485–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Leber AB, Egeth HE. It’s under control: top-down strategies can override attentional capture. Psychon Bull Rev. 2006;13:132–238.PubMedCrossRefGoogle Scholar
  17. 17.
    Burnham BR. Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychon Bull Rev. 2007;14(392–422).Google Scholar
  18. 18.
    Eimer M, Kiss M. Involuntary attentional capture is determined by task set: evidence from event-related brain potentials. J Cogn Neurosci. 2008;20:1423–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Folk CL, Remington RW, Johnston JC. Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform. 1992;18:1030–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Donk M, van Zoest W. Effects of salience are short-lived. Psychol Sci. 2008;19:733–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Ogawa T, Komatsu H. Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search. Exp Brain Res. 2004;173:1–13.CrossRefGoogle Scholar
  22. 22.
    Ansorge U, Horstmann G. Preemptive control of attentional capture by color: evidence from trial-by-trial analysis and ordering of onsets of capture effects in RT distributions. Q J Exp Psychol. 2007;60:952–75.CrossRefGoogle Scholar
  23. 23.
    Bichot NP, Rossi AF, Desimone R. Parallel and serial neural mechanisms for visual search in macaque area V4. Science. 2005;308:529–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang W-W, Luck S. Feature-based attention modulates feedforward visual processing. Nat Neurosci. 2009;12:24–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 2000;40:1489–506.PubMedCrossRefGoogle Scholar
  26. 26.
    Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20:1254–9.CrossRefGoogle Scholar
  27. 27.
    Parkhurst D, Law K, Niebur E. Modeling the role of salience in the allocation of overt visual attention. Vision Res. 2002;42:107–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Underwood G. Cognitive processing in eye guidance: algorithms for attention in image processing. Cognit Comput. 2009;1:64–76.CrossRefGoogle Scholar
  29. 29.
    Peters RJ, Iyer A, Itti L, Koch C. Components of bottom-up gaze allocation in natural images. Vision Res. 2005;45:2397–416.PubMedCrossRefGoogle Scholar
  30. 30.
    Elazary L, Itti L. Interesting objects are visually salient. J Vis. 2008;8(3):1–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Einhäuser W, Spain M, Perona P. Objects predict fixations better than early saliency. J Vis. 2008;8:1–26.Google Scholar
  32. 32.
    Frey HP, Honey C, König P. What’s color got to do with it? The influence of color on visual attention in different categories. J Vis. 2008;8:1–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci. 2001;24:1193–216.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen X, Zelinsky GJ. Real-world visual search is dominated by top-down guidance. Vision Res. 2006;46:4118–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Einhäuser W, Rutishauser U, Koch C. Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. J Vis. 2008;8:1–19.Google Scholar
  36. 36.
    Rutishauser U, Koch C. Probabilistic modeling of eye movement data during conjunction search via feature-based attention. J Vis. 2007;7:1–20.CrossRefGoogle Scholar
  37. 37.
    Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev. 2006;113:766–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Underwood G, Foulsham T. Visual saliency and semantic incongruency influence eye movements when inspecting pictures. Q J Exp Psychol. 2006;59:1931–49.CrossRefGoogle Scholar
  39. 39.
    Humphrey K, Underwood G. Domain knowledge moderates the influence of visual saliency in scene recognition. Br J Psychol. 2009;100:377–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Underwood G, Foulsham T, Humphrey K. Saliency and scan patterns in the inspection of real-world scenes: eye movements during encoding and recognition. Vis Cogn. 2009;17:812–34.CrossRefGoogle Scholar
  41. 41.
    Cerf M, Harel J, Einhäuser W, Koch C. Predicting human gaze using low-level saliency combined with face detection. Adv Neural Inf Process Syst. 2008;20:241–8.Google Scholar
  42. 42.
    Redies C, Hasenstein J, Denzler J. Fractal-like image statistics in visual art: similarity to natural scenes. Spat Vis. 2007;21:137–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Redies C, Hänisch J, Blickhan M, Denzler J. Artists portrait human faces with the Fourier statistics of complex natural scenes. Network. 2007;18:235–48.PubMedCrossRefGoogle Scholar
  44. 44.
    Harel J, Koch C, Perona P. Graph-based visual saliency. Adv Neural Inf Process Syst. 2006.Google Scholar
  45. 45.
    Foulsham T, Underwood G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J Vis. 2008;8:1–17.PubMedCrossRefGoogle Scholar
  46. 46.
    Walther D, Koch C. Modeling attention to salient proto-objects. Neural Netw. 2006;19:1395–407.PubMedCrossRefGoogle Scholar
  47. 47.
    Tatler BW, Baddeley RJ, Gilchrist ID. Visual correlates of fixation selection: effects of scale and time. Vision Res. 2005;45:643–59.PubMedCrossRefGoogle Scholar
  48. 48.
    Henderson JM, Pierce GL. Eye movements during scene viewing: evidence for mixed control of fixation durations. Psychon Bull Rev. 2008;15:566–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Wienrich C, Heße U, Müller-Plath G. Eye movements and attention in visual feature search with graded target-distractor-similarity. J Eye Mov Res. 2009;3:1–19.Google Scholar
  50. 50.
    Oliva A, Torralba A, Castelhano MS, Henderson JM. Top-down control of visual attention in object detection. Proc Int Conf Image Proc. 2003;1:253–6.Google Scholar
  51. 51.
    Tatler BW, Baddeley RJ, Vincent BT. The long and the short of it: spatial statistics at fixation vary with saccade amplitude and task. Vision Res. 2006;46:1857–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases an image feature distributions. J Vis. 2007;7:1–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Ballard D, Hayhoe M, Pook P, Rao R. Deictic codes for the embodiment of cognition. Behav Brain Sci. 1997;20:723–67.PubMedGoogle Scholar
  54. 54.
    Radziwill F. Stilleben. Berlin: Kupferstichkabinett, Staatliche Museen zu Berlin; n.a.Google Scholar
  55. 55.
    Cézanne P. La Sainte-Victoire vue des Infernets. St. Petersburg: The State Hermitage Museum; 1898.Google Scholar
  56. 56.
    Machotka P. Cezanne: landscape into art. New Haven: Yale University Press; 1996.Google Scholar
  57. 57.
    Shore S, Schmidt-Wulffen S, Tillman L. Stephen shore: uncommon places: the complete works. New York: Aperture; 1982.Google Scholar
  58. 58.
    De Kooning W. Untitled. Venice: Peggy Guggenheim Collection; 1958.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Isabella Fuchs
    • 1
  • Ulrich Ansorge
    • 1
    • 2
  • Christoph Redies
    • 3
  • Helmut Leder
    • 1
  1. 1.University of ViennaViennaAustria
  2. 2.University of OsnabrückOsnabrückGermany
  3. 3.University of Jena School of MedicineJenaGermany

Personalised recommendations