Cognitive Computation

, 1:327 | Cite as

Biologically Inspired Tensor Features

  • Yang Mu
  • Dacheng TaoEmail author
  • Xuelong Li
  • Fionn Murtagh


According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate’s visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.


Biologically inspired features C1 units Manifold learning Discriminative locality alignment Face recognition 



This project was partially supported by the Nanyang Technological University Start-Up Grant (under project number M58020010), 100 Talents Program of The Chinese Academy of Sciences and K. C. WONG Education Foundation Award of the Chinese Academy of Sciences.


  1. 1.
    Alex OM, Terzopoulos D. Multilinear subspace analysis for image ensembles. Int Conf ComputVis Pattern Recognit. 2003;2:93–9.Google Scholar
  2. 2.
    Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.CrossRefGoogle Scholar
  3. 3.
    Belkin M, Niyogi P, Sindhwani V. On manifold regularization. In: Proc. Int’l Workshop on Artificial Intelligence and Statistics. 2005.Google Scholar
  4. 4.
    Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Inf Process Syst. 2002;14:585–91.Google Scholar
  5. 5.
    Bian W, Tao D. Harmonic mean for subspace selection. International conference on pattern recognition; 2008. p. 1–4.Google Scholar
  6. 6.
    Cai D, He X, Han J. Spectral regression for efficient regularized subspace learning. IEEE international conference on computer vision; 2007. p. 1–8.Google Scholar
  7. 7.
    Cai D, He X, Han J, Zhang H. Orthogonal Laplacian faces for face recognition. IEEE Trans Image Process. 2006;15(11):3608–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Fukushima K. Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.CrossRefPubMedGoogle Scholar
  9. 9.
    Gao X, Yang Y, Tao D, Li X. Discriminative optical flow tensor for video semantic analysis. Comput Vis Image Underst. 2009;113(3):372–83.CrossRefGoogle Scholar
  10. 10.
    He X, Niyogi P. Locality preserving projections. Neural information processing systems; 2003. p. 20.Google Scholar
  11. 11.
    He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacian faces. IEEE Trans Patten Anal Mach Intell. 2005;27(3):328–40.CrossRefGoogle Scholar
  12. 12.
    Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24:417–41.CrossRefGoogle Scholar
  13. 13.
    Huang Y, Huang K, Tao D, Tan T, Li X. Enhanced biologically inspired model. Int Conf Comput Vis Pattern Recognit. 2008;1–8.Google Scholar
  14. 14.
    Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Trans Syst Man Cybern B Cybern. 2008;38(2):342–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu C, Wechsler C. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process. 2002;11(4):467–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu W, Tao D, Liu J. Transductive component analysis. IEEE international conference on data mining; 2008. p. 433–42.Google Scholar
  17. 17.
    Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2003;60(2):91–100.CrossRefGoogle Scholar
  18. 18.
    Meyers E, Wolf L. Using biologically inspired features for face processing. Int J Comput Vis. 2008;76:93–104.CrossRefGoogle Scholar
  19. 19.
    Mutch J, Lowe D. Multiclass object recognition using sparse, localized features. International conference on computer vision and pattern recognition; 2006. p. 11–8.Google Scholar
  20. 20.
    Ojala T, Pietikäinen M, Mäenpää T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans Patten Anal Mach Intell. 2002;24(7):971–87.CrossRefGoogle Scholar
  21. 21.
    Phillips PJ, Moon H, Rizvi SA, Rauss PJ. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1090–104.CrossRefGoogle Scholar
  22. 22.
    Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.CrossRefPubMedGoogle Scholar
  23. 23.
    Riesenhuber M, Poggio T. Models of object recognition. Nat Neurosci. 2000;3:1199–204.CrossRefPubMedGoogle Scholar
  24. 24.
    Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290:2323–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Schneider R, Riesenhuber M. Detailed look at scale and translation invariance in a hierarchical neural model of visual object recognition. AI Memo 2002-011/CBCL Memo218, Massachusetts Institute of Technology, 2002.Google Scholar
  27. 27.
    Serre T, Riesenhuber M. Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. AI Memo 2004-017/CBCL Memo239, Massachusetts Institute of Technology, 2004. Google Scholar
  28. 28.
    Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex. Int Conf Comput Vis Pattern Recognit. 2005;2:994–1000.Google Scholar
  29. 29.
    Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell. 2007;29(3):411–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Song D, Tao D. Biologically inspired feature manifold for scene classification. IEEE Trans Image Process. 2009;18:1–30.CrossRefGoogle Scholar
  31. 31.
    Song D, Tao D. C1 units for scene classification. International conference on pattern recognition; 2008. p. 1–4.Google Scholar
  32. 32.
    Sun J, Tao D, Papadimitriou S, Yu P, Faloutsos C. Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data. 2008;2(3):11.1–11.37.Google Scholar
  33. 33.
    Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos S. Probabilistic tensor analysis with Akaike and Bayesian information criteria. In: Ishikawa M, et al. editors. The 14th international conference on neural information processing. 2008;791–801.Google Scholar
  34. 34.
    Tao D, Li X, Wu X, Maybank S. Human carrying status in visual surveillance. Int Conf Comput Vis Pattern Recognit. 2006;2:1670–7.Google Scholar
  35. 35.
    Tao D, Li X, Wu X, Maybank S. General tensor discriminant analysis and Gabor feature for gait recognition. IEEE Trans Pattern Anal Mach Intell. 2007;29(10):1700–15.CrossRefPubMedGoogle Scholar
  36. 36.
    Tao D, Li X, Wu X, Hu W, Maybank S. Supervised tensor learning. Knowl Inf Syst. 2007;13:1–42.CrossRefGoogle Scholar
  37. 37.
    Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos C. Bayesian tensor analysis. IEEE international joint conference on neural networks; 2008. p. 1403–10.Google Scholar
  38. 38.
    Tao D, Song M, Li X, Shen J, Sun J, Wu X, et al. Bayesian tensor approach for 3-D Face modeling. IEEE Trans Circuits Syst Video Technol. 2008;18(10):1397–410.CrossRefGoogle Scholar
  39. 39.
    Tao D, Li X, Wu X, Maybank S. Tensor rank one discriminant analysis–a convergent method for discriminative multilinear subspace selection. Neurocomputing. 2008;71(10–12):1866–82.CrossRefGoogle Scholar
  40. 40.
    Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):260–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Turk M, Pentlanbd A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3:71–86.CrossRefGoogle Scholar
  42. 42.
    Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis. Neural information processing systems; 2005. p. 1569–76.Google Scholar
  43. 43.
    Zhang T, Tao D, Li X, Yang J. A unifying framework for spectral analysis based dimensionality reduction. IEEE international joint conference on neural networks; 2008. p. 1671–8.Google Scholar
  44. 44.
    Zhang T, Tao D, Yang J. Discriminative locality alignment. European conference on computer vision; 2008. p. 725–38.Google Scholar
  45. 45.
    Zhang T, Tao D, Li X, Yang J. Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng. 2009;21(9):1299–313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yang Mu
    • 1
  • Dacheng Tao
    • 1
    Email author
  • Xuelong Li
    • 2
  • Fionn Murtagh
    • 3
  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  3. 3.Department of Computer ScienceRoyal Holloway, University of LondonSurreyUK

Personalised recommendations