Cognitive Computation

, Volume 1, Issue 4, pp 342–347

Sub-Symbols and Icons

Article

Abstract

There is a relationship between perception through biological senses and simple problem-solving. According to the production system theory, we can define a geometrically based problem-solving model as a production system operating on vectors of fixed dimensions (Icons). Our goal is to form a sequence of associations, which lead to a desired state represented by a vector, from an initial state represented by a vector. We define a simple and universal heuristics function, which takes into account the relationship between the vector and the corresponding similarity of the represented object or state in the real world.

Keywords

Iconic representation Problem-solving Symbols Sub-symbols 

References

  1. 1.
    Aleksander I, Dunmall B, Del Frate V. Neurocomputational models of visualisation: a preliminary report. In: Proc. IWANN, Alicante, Spain; 1999.Google Scholar
  2. 2.
    Aleksander I, Morton H. Neurons and symbols, the stuff that mind is made of. London: Chapman and Hall; 1993.Google Scholar
  3. 3.
    Aleksander I, Morton H, Dunmall B. Seeing is believing. In: Proc. IWANN, Granada; 2001.Google Scholar
  4. 4.
    Allport A. Visual attention. In: Posner M, editor. Foundations of cognitive science. Cambridge, MA: The MIT Press; 1989. p. 631–82.Google Scholar
  5. 5.
    Anderson J. The architecture of cognition. Cambridge: Harvard University Press; 1983.Google Scholar
  6. 6.
    Anderson JR. Cognitive psychology and its implications. 4th ed. New York: W. H. Freeman and Company; 1995.Google Scholar
  7. 7.
    Arp R. Scenario visualization: an evolutionary account of creative problem solving. Cambridge: MIT Press; 2008.Google Scholar
  8. 8.
    Biederman I, Ju G. Surface vs. edge-based determinants of visual recognition. Cogn Psychol. 1988;20:38–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Browne A, Sun R. Connectionistic variable binding. Expert Systems. 1999;16(3):189–206.CrossRefGoogle Scholar
  10. 10.
    Browne A, Sun R. Connectionistic inference models. Neural Networks. 2001;14:1331–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Downing C, Oinker S. The spatial structure of visual attention. In: Posner M, Marin O, editors. Attention and performance XI. Hillsdale, NJ: Erlbaum; 1985. p. 171–87.Google Scholar
  12. 12.
    Feldman J. Four frames suffice: a provisional model of vision and space. Behavioral and Brain Sciences. 1985;8:265–89.CrossRefGoogle Scholar
  13. 13.
    Gilovich T. Tversky. In: Wilson RA, Keil FC, editors. The MIT encyclopedia of the cognitive sciences. New York: The MIT Press; 1999. p. 849–850.Google Scholar
  14. 14.
    Goldstone R. Similarity. In: Wilson RA, Keil FC, editors. The MIT encyclopedia of the cognitive sciences. New York: The MIT Press; 1999. p. 763–765.Google Scholar
  15. 15.
    Hofstadter D. Fluid concepts and creative analogies: computer models of the fundamental mechanisms of thought. New York: Basic Books; 1995.Google Scholar
  16. 16.
    Johnson-Laird P. Mental models: toward a cognitive science of language, inference and consciousness. Cambridge: Harvard University Press; 1983.Google Scholar
  17. 17.
    Klahr P, Waterman D. Expert systems: techniques, tools and applications. Longman: Addison-Wesley; 1986.Google Scholar
  18. 18.
    Kosslyn SM. Image and brain, the resolution of the imagery debate. Cambridge: The MIT Press; 1994.Google Scholar
  19. 19.
    Kurbat M, Smith E, Medin D. Categorization, typicality, and shape similarity. In: Proceedings of the cognitive science meeting. Atlanta, GA; 1994.Google Scholar
  20. 20.
    Lancy D. Cross-cultural studies in cognition and mathematics. New York: Academic Press; 1983.Google Scholar
  21. 21.
    Luger GF, Stubblefield WA. Artificial intelligence, structures and strategies for complex problem solving. 3rd ed. Longman: Addison-Wesley; 1998.Google Scholar
  22. 22.
    McClelland J, Rumelhart D. Distributed memory and the representation of general and specific memory. J Exp Psychol Gen. 1985;114:159–88.CrossRefPubMedGoogle Scholar
  23. 23.
    Newell A. Physical symbol systems. San Francisco: Norman; 1981.Google Scholar
  24. 24.
    Newell A. Unified theories of cognition. Cambridge: Harvard University Press; 1990.Google Scholar
  25. 25.
    Newell A, Simon H. Human problem solving. Englewood Cliffs: Prentice-Hall; 1972.Google Scholar
  26. 26.
    Newell A, Simon H. Computer science as empirical inquiry: symbols and search. Communication of the ACM. 1976;19(3):113–26.CrossRefGoogle Scholar
  27. 27.
    Opwis K, Ploetzner R. Kognitive psychologie mit dem computer. Heidelberg: Spektrum Akademischer Verlag; 1996.Google Scholar
  28. 28.
    Osherson DN. New axioms for the contrast model of similarity. J Math Psychol. 1987;31:93–103.CrossRefGoogle Scholar
  29. 29.
    Osherson DN. Probability judgment. In: Smith EE, Osherson DN, editors. Thinking, 2nd edn, vol. 3. Chap. 2, New York: MIT Press; 1995. p. 35–75.Google Scholar
  30. 30.
    Plate T. Holographic reduced representations. IEEE Transactions on Neural Networks. 1995;6(3):623–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Plate T. Distributed representations. In: Nadel L, editor. Macmillan encyclopedia of cognitive science. London: Macmillan; 2002.Google Scholar
  32. 32.
    Posner MI, Raichle EM. Images of mind. New York: Scientific American Library; 1994.Google Scholar
  33. 33.
    Russell SJ, Norvig P. Artificial intelligence: a modern approach. Englewood Cliffs: Prentice-Hall; 1995.Google Scholar
  34. 34.
    Simon HA. The science of the artificial. New York: The MIT Press; 1969.Google Scholar
  35. 35.
    Simon HA. Models of my life. New York: Basic Books; 1991.Google Scholar
  36. 36.
    Smith E, Sloman S. Similarity vs. rulebased categorization. Memory Cognition. 1994;22:377–86.PubMedGoogle Scholar
  37. 37.
    Smith EE. Concepts and categorization. In: Smith EE, Osherson DN, editors. Thinking, 2nd edn, vol. 3. Chap. 1, New York: MIT Press; 1995, p. 3–33.Google Scholar
  38. 38.
    Stiny G. Shape: talking about seeing and doing. New York: MIT Press; 2006.Google Scholar
  39. 39.
    Sun R. A two-level hybrid architecture for structuring knowledge for commonsense reasoning. In: Sun R, Bookman LA, editors. Computational architectures integrating neural and symbolic processing. Chap. 8, Boston: Kluwer Academic Publishers; 1995, p. 247–182.Google Scholar
  40. 40.
    Sussman G. A computer model of skill acquisition. Cambridge: MIT; 1975.Google Scholar
  41. 41.
    Tarski A. The semantic conception of truth and foundations of semantics. Philos. and Phenom. Res. 1944;4:241–376.Google Scholar
  42. 42.
    Tarski A. Logic, semantics, metamathematics. London: Oxford University Press; 1956.Google Scholar
  43. 43.
    Tarski A. Pisma logiczno-filozoficzne. Prawda, vol. 1. Warszawa: Wydawnictwo Naukowe PWN; 1995.Google Scholar
  44. 44.
    Tversky A. Feature of similarity. Psychol Rev. 1977;84:327–52.CrossRefGoogle Scholar
  45. 45.
    Wichert A. Pictorial reasoning with cell assemblies. Connection Science. 2001;13(1):1–42.CrossRefGoogle Scholar
  46. 46.
    Wichert A. Learning of associative prediction by experience. Neurocomputing. 2002;48(1–4):741–2.CrossRefGoogle Scholar
  47. 47.
    Wichert A. Associative computer: a hybrid connectionistic production system. Cognitive Systems Research. 2005;6(2):111–44.CrossRefGoogle Scholar
  48. 48.
    Wichert A, Pereira JD, Carreira P. Visual search light model for mental problem solving. Neurocomputing. 2008;71(13–15):2806–22.CrossRefGoogle Scholar
  49. 49.
    Winston PH. Artificial intelligence. 3rd ed. Longman: Addison-Wesley; 1992.Google Scholar
  50. 50.
    Wermter S, Sun R. Hybrid neural systems. Berlin: Springer–Verlag; 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of InformaticsINESC-ID/IST—Technical University of LisboaLisbonPortugal

Personalised recommendations