Advertisement

Cognitive Computation

, Volume 1, Issue 1, pp 50–63 | Cite as

Explanatory Correlates of Consciousness: Theoretical and Computational Challenges

  • Anil Seth
Article

Abstract

Consciousness is a key feature of mammalian cognition and revealing its underlying mechanisms is one of the most important scientific challenges for the 21st century. In this article I review how computational and theoretical approaches can facilitate a transition from correlation to explanation in consciousness science. I describe progress towards identifying ‘explanatory correlates’ underlying four fundamental properties characterizing most if not all conscious experiences: (i) the co-existence of segregation and integration in conscious scenes, (ii) the emergence of a subjective first-person perspective, (iii) the presence of affective conscious contents, either transiently (emotion) or as a background (mood) and (iv) experiences of intention and agency that are characteristic of voluntary action. I also discuss how synthetic approaches can shed additional light on possible functions of consciousness, the role of embodiment in consciousness, and the plausibility of constructing a conscious artefact.

Keywords

Consciousness Explanatory correlate Causal density Complexity Perspectivalness Emotion Volition Computational model Selfhood Emergence 

Notes

Acknowledgements

Preparation of this article was supported by EPSRC leadership fellowship EP/G007543/1. I am grateful to Tom Ziemke for useful comments on a first draft and to Owen Holland for Fig. 3b.

References

  1. 1.
    Amari S-I. A method of statistical neurodynamics. Kybernetik. 1974;14:201–15.PubMedGoogle Scholar
  2. 2.
    Baars BJ. A cognitive theory of consciousness. New York: Cambridge University Press; 1988.Google Scholar
  3. 3.
    Baars BJ, Banks WP, Newman J, editors. Essential sources in the scientific study of consciousness. Cambridge: MIT Press; 2003.Google Scholar
  4. 4.
    Bedau M. Weak emergence. Philos Perspect. 1997;11:375–99.Google Scholar
  5. 5.
    Bishop R, Atmanspacher H. Contextual emergence in the description of properties. Found Phys. 2006;36:1753–77.CrossRefGoogle Scholar
  6. 6.
    Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA. 2007;104(29):12187–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Bongard J, Zykov V, Lipson H. Resilient machines through continuous self-modeling. Science. 2006;314(5802):1118–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Bosse T, Jonker CM, Treur J. Formalization of Damasio’s theory of emotion, feeling and core consciousness. Conscious Cogn. 2008;17(1):94–113.PubMedCrossRefGoogle Scholar
  9. 9.
    Braitenberg V. Vehicles: experiments in synthetic psychology. Cambridge: MIT Press; 1984.Google Scholar
  10. 10.
    Bressler SL, Kelso JA. Cortical coordination dynamics and cognition. Trends Cogn Sci. 2001;5(1):26–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Burgess N. Spatial cognition and the brain. Ann N Y Acad Sci. 2008;1124:77–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Chalmers DJ. Strong and weak emergence. In: Clayton P, Davies P, editors. The re-emergence of emergence. Oxford: Oxford University Press; 2006.Google Scholar
  13. 13.
    Chang H. Inventing temperature: measurement and scientific progress. New York: Oxford University Press; 2004.CrossRefGoogle Scholar
  14. 14.
    Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1585–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Clowes RW, Seth AK. Axioms, properties and criteria: roles for synthesis in the science of consciousness. Artif Intell Med. 2008;44:93–104.CrossRefGoogle Scholar
  16. 16.
    Cosmelli D, Lachaux J-P, Thompson E. Neurodynamics of consciousness. In: Zelazo PD, Moscovitch M, Thompson E, editors. The cambridge handbook of consciousness. Cambridge: Cambridge University Press; 2007. p. 731–75.Google Scholar
  17. 17.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.PubMedGoogle Scholar
  18. 18.
    Crick F, Koch C. Towards a neurobiological theory of consciousness. Semin Neurosci. 1990;2:263–75.Google Scholar
  19. 19.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Cruse H. The evolution of cognition: a hypothesis. Cogn Sci. 2003;27:135–55.CrossRefGoogle Scholar
  21. 21.
    Crutchfield J. The calculi of emergence: computation, dynamics, and induction. Physica D. 1994;75:11–54.CrossRefGoogle Scholar
  22. 22.
    Damasio A. Descartes’ error. London: MacMillan; 1994.Google Scholar
  23. 23.
    Damasio A. The feeling of what happens: body and emotion in the making of consciousness. Arlington Heights: Harvest Books; 2000.Google Scholar
  24. 24.
    Dehaene S, Sergent C, Changeux JP. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA. 2003;100(14):8520–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Doya K. Modulators of decision making. Nat Neurosci. 2008;11(4):410–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Edelman GM. The remembered present. New York: Basic Books; 1989.Google Scholar
  27. 27.
    Edelman GM. Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci USA. 2003;100(9):5520–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Edelman DB, Baars BJ, Seth AK. Identifying the hallmarks of consciousness in non-mammalian species. Conscious Cogn. 2005;14(1):169–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Ehrsson HH. The experimental induction of out-of-body experiences. Science. 2007;317(5841):1048.PubMedCrossRefGoogle Scholar
  30. 30.
    Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5(1):16–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Fellous J-M, Arbib MA, editors. Who needs emotions? The brain meets the robot. Oxford: Oxford University Press; 2005.Google Scholar
  32. 32.
    Franklin S, Graesser A. A software agent model of consciousness. Conscious Cogn. 1999;8(3):285–301.PubMedCrossRefGoogle Scholar
  33. 33.
    Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319(5867):1215–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Gould SJ, Lewontin RC. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci. 1979;205(1161):581–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Grandjean D, Sander D, Scherer KR. Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Conscious Cogn. 2008;17(2):484–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37:424–38.CrossRefGoogle Scholar
  37. 37.
    Grossberg S, Gutowski WE. Neural dynamics of decision making under risk: affective balance and cognitive-emotional interactions. Psychol Rev. 1987;94(3):300–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–96; discussion 396–442.PubMedGoogle Scholar
  39. 39.
    Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9(12):934–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.PubMedCrossRefGoogle Scholar
  41. 41.
    Haugeland J. Artificial intelligence: the very idea. Cambridge: MIT Press; 1985.Google Scholar
  42. 42.
    Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Hesslow G, Jirenhed D-A. The inner world of a simple robot. J Conscious Stud. 2007;14:85–96.Google Scholar
  44. 44.
    Holland O. Editorial introduction. J Conscious Stud. 2003;10(4/5):1–6.Google Scholar
  45. 45.
    Holland O. A strongly embodied approach to machine consciousness. J Conscious Stud. 2007;14:97–110.Google Scholar
  46. 46.
    Hussain A. (this volume). Editorial introduction.Google Scholar
  47. 47.
    Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA. 2008;105(9):3593–8.PubMedCrossRefGoogle Scholar
  48. 48.
    James W. Does consciousness exist? J Philos Psychol Sci Methods. 1904;1:477–91.Google Scholar
  49. 49.
    Kim J. Emergence: core ideas and issues. Synthese. 2006;151:547–59.CrossRefGoogle Scholar
  50. 50.
    Koch C. The quest for consciousness: a neurobiological approach. Englewood: Roberts and co; 2004.Google Scholar
  51. 51.
    Koechlin E, Hyafil A. Anterior prefrontal function and the limits of human decision-making. Science. 2007;318(5850):594–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Lambie JA, Marcel AJ. Consciousness and the varieties of emotion experience: a theoretical framework. Psychol Rev. 2002;109(2):219–59.PubMedCrossRefGoogle Scholar
  53. 53.
    Lamme V. Towards a true neural stance on consciousness. Trends Cogn Sci. 2006;10(11):494–501.PubMedCrossRefGoogle Scholar
  54. 54.
    Laureys S, Pellas F, Van Eeckhout P, Ghorbel S, Schnakers C, Perrin F, et al. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res. 2005;150:495–511.PubMedCrossRefGoogle Scholar
  55. 55.
    Lenggenhager B, Tadi T, Metzinger T, Blanke O. Video ergo sum: manipulating bodily self-consciousness. Science. 2007;317(5841):1096–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Libet B. Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci. 1985;8:529–66.Google Scholar
  57. 57.
    Mandik P. Phenomenal consciousness and the allocentric-egocentric interface. In: Buccheri R, editor. Endophysics, time, quantum and the subjective. New York: World Scientific Publishing Co; 2005.Google Scholar
  58. 58.
    Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science. 2007;315(5810):393–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Maturana H, Varela F. Autopoiesis and cognition: the realization of the living, vol. 42. Dordrecht: D. Reidel; 1980.Google Scholar
  60. 60.
    Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88(2):942–53.PubMedGoogle Scholar
  61. 61.
    Merker B. The liabilities of mobility: a selection pressure for the transition to consciousness in animal evolution. Conscious Cogn. 2005;14(1):89–114.PubMedCrossRefGoogle Scholar
  62. 62.
    Metzinger T. Being no-one. Cambridge: MIT Press; 2003.Google Scholar
  63. 63.
    Metzinger T. Empirical perspectives from the self-model theory of subjectivity: a brief summary with examples. Prog Brain Res. 2008;168:218–45.Google Scholar
  64. 64.
    Nagel T. What is it like to be a bat? Philos Rev. 1974;83:435–50.CrossRefGoogle Scholar
  65. 65.
    Northoff G, Panksepp J. The trans-species concept of self and the subcortical-cortical midline system. Trends Cogn Sci. 2008;12(7):259–64.PubMedCrossRefGoogle Scholar
  66. 66.
    O’Regan JK, Noe A. A sensorimotor account of vision and visual consciousness. Behav Brain Sci. 2001;24(5):939–73; discussion 973–1031.PubMedCrossRefGoogle Scholar
  67. 67.
    Panksepp J. Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn. 2005;14(1):30–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9(2):148–58.PubMedCrossRefGoogle Scholar
  69. 69.
    Phillips ML, Medford N, Senior C, Bullmore ET, Suckling J, Brammer MJ, et al. Depersonalization disorder: thinking without feeling. Psychiatry Res. 2001;108(3):145–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Prescott TJ, Bryson JJ, Seth AK. Modelling natural action selection (edited special issue). Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1519–721.Google Scholar
  71. 71.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–86.PubMedCrossRefGoogle Scholar
  73. 73.
    Rees G, Kreiman G, Koch C. Neural correlates of consciousness in humans. Nat Rev Neurosci. 2002;3(4):261–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Revonsuo A. Inner presence: consciousness as a biological phenomenon. Cambridge: MIT Press; 2005.Google Scholar
  75. 75.
    Searle J. Minds, brains, and programs. Behav Brain Sci. 1980;3:417–57.CrossRefGoogle Scholar
  76. 76.
    Seth AK. Causal connectivity analysis of evolved neural networks during behavior. Network: Comput Neural Syst. 2005;16(1):35–55.CrossRefGoogle Scholar
  77. 77.
    Seth AK. Causal networks in simulated neural systems. Cogn Neurodyn. 2008;2:49–64.PubMedCrossRefGoogle Scholar
  78. 78.
    Seth AK. Measuring emergence via nonlinear Granger causality. In: Bullock S, Watson R, Noble J, Bedau M, editors. Artificial life XI: proceedings of the 11th international conference on the simulation and synthesis of living systems. Cambridge: MIT Press; 2008. p. 41–9.Google Scholar
  79. 79.
    Seth AK. Functions of consciousness. In: Banks WP, editor. Elsevier encyclopedia of consciousness. Amsterdam: Elsevier (in press).Google Scholar
  80. 80.
    Seth AK, Edelman GM. Environment and behavior influence the complexity of evolved neural networks. Adapt Behav. 2004;12(1):5–20.CrossRefGoogle Scholar
  81. 81.
    Seth AK, Edelman, GM. Consciousness and complexity. In: Meyer B, editor. Springer encyclopedia of complexity and systems science. Berlin: Springer (in press).Google Scholar
  82. 82.
    Seth AK, Izhikevich E, Reeke GN, Edelman GM. Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci USA. 2006;103(28):10799–804.PubMedCrossRefGoogle Scholar
  83. 83.
    Seth AK, Dienes Z, Cleeremans A, Overgaard M, Pessoa L. Measuring consciousness: relating behavioural and neurophysiological approaches. Trends Cogn Sci. 2008;12(8):314–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Shadlen MN, Gold JI. The neurophysiology of decision-making as a window on cognition. In: Gazzaniga MS, editor. The cognitive neurosciences. 3rd ed. Cambridge: MIT Press; 2004. p. 1229–41.Google Scholar
  85. 85.
    Shalizi C, Moore C. What is a macrostate? Subjective observations and objective dynamics. 2006. http://arxiv.org/abs/cond-mat/0303625.
  86. 86.
    Shanahan M. A cognitive architecture that combines internal simulation with a global workspace. Conscious Cogn. 2006;15(2):433–49.PubMedCrossRefGoogle Scholar
  87. 87.
    Shanahan M. Dynamical complexity in small-world networks of spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;78(4 Pt 1):041924.PubMedGoogle Scholar
  88. 88.
    Sporns O, Lungarella M. Evolving coordinated behavior by maximizing information structure. In: Rocha L, Yaeger L, Bedau M, Floreano D, Goldstone RL, Vespigniani A, editors. Artificial life X: proceedings of the 10th international conference on the simulation and synthesis of living systems. Cambridge: MIT Press; 2006. p. 322–9.Google Scholar
  89. 89.
    Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex. 2000;10:127–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Thagard P, Aubie B. Emotional consciousness: a neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience. Conscious Cogn. 2008;17(3):811–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Thompson E. Life and mind: from autopoeisis to neurophenomenology: a tribute to Francisco Varela. Phenomenol Cogn Sci. 2004;3:381–98.CrossRefGoogle Scholar
  92. 92.
    Thompson E, Varela FJ. Radical embodiment: neural dynamics and consciousness. Trends Cogn Sci. 2001;5(10):418–25.PubMedCrossRefGoogle Scholar
  93. 93.
    Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004;5(1):42.PubMedCrossRefGoogle Scholar
  94. 94.
    Tononi G, Edelman GM. Consciousness and complexity. Science. 1998;282(5395):1846–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci. 2008;1124:239–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Tononi G, Sporns O. Measuring information integration. BMC Neurosci. 2003;4(1):31.PubMedCrossRefGoogle Scholar
  97. 97.
    Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA. 1994;91(11):5033–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Tsuchiya N, Adolphs R. Emotion and consciousness. Trends Cogn Sci. 2007;11(4):158–67.PubMedCrossRefGoogle Scholar
  99. 99.
    Vallar G, Ronchi R. Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp Brain Res. 2008;192(3):533–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Varela FJ. Patterns of life: intertwining identity and cognition. Brain Cogn. 1997;34(1):72–87.PubMedCrossRefGoogle Scholar
  101. 101.
    Wagar BM, Thagard P. Spiking phineas gage: a neurocomputational theory of cognitive-affective integration in decision making. Psychol Rev. 2004;111(1):67–79.PubMedCrossRefGoogle Scholar
  102. 102.
    Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2.PubMedCrossRefGoogle Scholar
  103. 103.
    Wegner D. The illusion of conscious will. Cambidge: MIT Press; 2002.Google Scholar
  104. 104.
    Werner G. Metastability, criticality and phase transitions in brain and its models. Biosystems. 2007;90(2):496–508.PubMedCrossRefGoogle Scholar
  105. 105.
    Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7–8):1317–29.PubMedCrossRefGoogle Scholar
  106. 106.
    Yaeger L, Sporns O. Evolution of neural structure and complexity in a computational ecology. In: Rocha L, Yaeger L, Bedau M, Floreano D, Goldstone RL, Vespigniani A, editors. Artificial life X: proceedings of the 10th international conference on the simulation and synthesis of living systems. Cambridge: MIT Press; 2006, p. 330–6.Google Scholar
  107. 107.
    Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron. 2005;46(4):681–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Zeman A. What in the world is consciousness. Prog Brain Res. 2005;150:1–10.PubMedCrossRefGoogle Scholar
  109. 109.
    Ziemke T. The embodied self—theories, hunches, and robot models. J Conscious Stud. 2007;14:167–79.Google Scholar
  110. 110.
    Ziemke T, Jirenhed D-A, Hesslow G. Internal simulation of perception: a minimal neurorobotic model. Neurocomputing. 2005;68:85–104.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of SussexBrightonUK

Personalised recommendations