Trastuzumab et lapatinib dans la prise en charge du cancer du sein HER2 positif

  • S. Guiu
  • I. Adoubi
  • J. C. Kouassi Comoe
  • P. Fumoleau
  • B. Coudert
Article de Synthèse / Review Article
  • 55 Downloads

Résumé

Les cancers du sein HER2 (human epidermal growth factor receptor 2) positifs, c’est-à-dire surexprimant la protéine HER2 en immunohistochimie et/ou présentant une amplification du gène HER2 représentent 10 à 26 % de l’ensemble des cancers du sein. La surexpression de ce récepteur tyrosine-kinase est classiquement associée à un mauvais pronostic. Cependant, l’utilisation de thérapeutiques anti-HER2 a considérablement modifié la prise en charge et le pronostic de ces patientes, que ce soit en situation métastatique ou en situation adjuvante. La première molécule ayant obtenu l’AMM est le trastuzumab (Herceptin®, Roche), anticorps monoclonal bloquant le domaine extracellulaire du récepteur HER2 de façon spécifique. Le lapatinib (Tyverb®, Glaxosmithkline) est apparu plus récemment et n’a pour l’instant son AMM que dans les cancers du sein HER2 positifs métastatiques. Il agit au niveau intracellulaire en bloquant de façon réversible les domaines tyrosines-kinases à la fois de HER1 et 2, expliquant un profil de toxicité différent du trastuzumab. Nous présenterons dans cette revue de la littérature les différentes associations possibles (hormonothérapie/chimiothérapie) en situation métastatique avec le trastuzumab et le lapatinib. Nous nous intéresserons également aux données de cardiotoxicité et aux données disponibles dans la prise en charge des métastases cérébrales chez les patientes HER2 positives. Enfin, nous aborderons les grandes études de phase III ayant conduit à l’utilisation du trastuzumab en adjuvant.

Mots clés

Cancer Sein HER2 Trastuzumab Lapatinib 

Trastuzumab and lapatinib for the management of the HER2-positive breast cancer

Abstract

HER2-positive breast cancers, i.e., with an overexpression of the HER2-protein in immunohistochemistry and/or with anHER2gene amplification, account for 10% to 26% of breast cancers. The surexpression of this tyrosine kinase receptor is often associated with a poor prognosis. However, the use of HER2-targeted therapy has considerably changed the management and the prognosis of these patients, both in metastatic and adjuvant settings. The first available molecule was trastuzumab (Herceptin®, Roche), a humanized monoclonal antibody specifically directed against the extracellular domain of the HER2-receptor. Recently, lapatinib (Tyverb®, Glaxosmithkline) has been approved for the metastatic HER2-positive breast cancers only. This molecule inhibits the intracellular tyrosine kinase domains of both HER1- and HER2-receptors, explaining a different toxicity compared to trastuzumab. We present an overview of the different possible associations in the metastatic setting between the trastuzumab on one part and the lapatinib on the other part and the hormonotherapy or the chemotherapy. Data regarding cardiotoxicity and the use of the HER2-targeted therapy in the management of brain metastases are also reviewed. Finally, the phase III studies involving trastuzumab in the adjuvant setting are detailed.

Keywords

Cancer Breast HER2 Trastuzumab Lapatinib 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Slamon DJ, Clark GM, Wong SG, et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science (New York, NY) 235(4785): 177–182Google Scholar
  2. 2.
    Gown AM, Goldstein LC, Barry TS, et al (2008) High concordance between immunohistochemistry and fluorescence in situ hybridization testing for HER2 status in breast cancer requires a normalized IHC scoring system. Mod Pathol 21(10):1271–1277PubMedGoogle Scholar
  3. 3.
    Wolff AC, Hammond ME, Schwartz JN, et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145PubMedGoogle Scholar
  4. 4.
    Burstein HJ, Winer EP (2005) HER2 or not HER2: that is the question. J Clin Oncol 23(16):3656–3659PubMedGoogle Scholar
  5. 5.
    Ring A, Dowsett M (2003) Human epidermal growth factor receptor 2 and hormonal therapies: clinical implications. Clin Breast Cancer 4(Suppl 1):S34–S41PubMedGoogle Scholar
  6. 6.
    Dowsett M (2001) Overexpression of HER2 as a resistance mechanism to hormonal therapy for breast cancer. Endocr Relat Cancer 8(3):191–195PubMedGoogle Scholar
  7. 7.
    De Laurentiis M, Arpino G, Massarelli E, et al (2005) A metaanalysis on the interaction between HER2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res 11(13):4741–4748PubMedGoogle Scholar
  8. 8.
    Rasmussen BB, Regan MM, Lykkesfeldt AE, et al (2008) Adjuvant letrozole vs tamoxifen according to centrally-assessed ErbB2 status for postmenopausal women with endocrineresponsive early breast cancer: supplementary results from the BIG 1-98 randomised trial. Lancet Oncol 9(1):23–28PubMedGoogle Scholar
  9. 9.
    Kaufman B, Mackey J, Clemens M (2006) Trastuzumab plus anastrozole prolongs progression-free survival in postmenopausal women with HER2-positive, hormone-dependent metastatic breast cancer. ESMOGoogle Scholar
  10. 10.
    Clemens M, Kaufman B, Mackey JR, et al (2007) Trastuzumab plus anastrozole may prolong overall survival in postmenopausal women with HER2-positive, hormone-dependent metastatic breast cancer: Results of a post-hoc analysis from the TAnDEM study. ASCO Breast Cancer SymposiumGoogle Scholar
  11. 11.
    Marcom PK, Isaacs C, Harris L, et al (2007) The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2-positive and ER positive advanced breast cancers. Breast Cancer Res Treat 102(1):43–49PubMedGoogle Scholar
  12. 12.
    Johnston S, Pippen J Jr, Pivot X, et al (2009) Lapatinib combined with letrozole vs letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 27(33):5538–5546PubMedGoogle Scholar
  13. 13.
    Baselga J, Tripathy D, Mendelsohn J, et al (1999) Phase II study of weekly intravenous trastuzumab (Herceptin®) in patients with HER2/neu-overexpressing metastatic breast cancer. Sem Oncol 26(4 Suppl 12):78–83Google Scholar
  14. 14.
    Cobleigh MA, Vogel CL, Tripathy D, et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2648PubMedGoogle Scholar
  15. 15.
    Vogel CL, Cobleigh MA, Tripathy D, et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726PubMedGoogle Scholar
  16. 16.
    Baselga J, Carbonell X, Castaneda-Soto NJ, et al (2005) Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23(10):2162–2171PubMedGoogle Scholar
  17. 17.
    Slamon DJ, Leyland-Jones B, Shak S, et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11): 783–792PubMedGoogle Scholar
  18. 18.
    Slamon DJ, Eiermann W, Robert N, et al (2005) Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab (TCH) in HER2-positive early breast cancer patients: BCIRG 006 Study. San Antonio Breast Cancer SymposiumGoogle Scholar
  19. 19.
    Leyland-Jones B, Gelmon K, Ayoub JP, et al (2003) Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol 21(21):3965–3971PubMedGoogle Scholar
  20. 20.
    Perez EA, Suman VJ, Rowland KM, et al (2005) Two concurrent phase II trials of paclitaxel/carboplatin/trastuzumab (weekly or every-3-week schedule) as first-line therapy in women with HER2-overexpressing metastatic breast cancer: NCCTG study 983252. Clin Breast Cancer 6(5):425–432PubMedGoogle Scholar
  21. 21.
    Najagami K, Inoue K, Mizutani M, et al (2008) Randomized phase III study of trastuzumab monotherapy followed by docetaxel and trastuzumab vs the combination of trastuzumab and docetaxel as first-line treatment in patients with HER2-positive metastatic breast cance. San Antonio Breast Cancer SymposiumGoogle Scholar
  22. 22.
    Marty M, Cognetti F, Maraninchi D, et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as firstline treatment: the M77001 study group. J Clin Oncol 23(19): 4265–4274PubMedGoogle Scholar
  23. 23.
    Gasparini G, Gion M, Mariani L, et al (2007) Randomized phase II trial of weekly paclitaxel alone vs trastuzumab plus weekly paclitaxel as first-line therapy of patients with HER2-positive advanced breast cancer. Breast Cancer Res Treat 101(3):355–365PubMedGoogle Scholar
  24. 24.
    Fountzilas G, Dafni U, Dimopoulos MA, et al (2008) A randomized phase III study comparing three anthracycline-free taxanebased regimens, as first line chemotherapy, in metastatic breast cancer A Hellenic Cooperative Oncology Group study. Breast Cancer Res Treat 115(1):87–99.PubMedGoogle Scholar
  25. 25.
    Seidman AD, Berry D, Cirrincione C, et al (2008) Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER2 overexpressors and random assignment to trastuzumab or not in HER2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26(10):1642–1649PubMedGoogle Scholar
  26. 26.
    Robert N, Leyland-Jones B, Asmar L, et al (2006) Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 24(18): 2786–2792PubMedGoogle Scholar
  27. 27.
    Baselga J, Norton L, Albanell J, et al (1998) Recombinant humanized anti-HER2 antibody (Herceptin®) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neuoverexpressing human breast cancer xenografts. Cancer Res 58(13):2825–2831PubMedGoogle Scholar
  28. 28.
    Pegram MD, Konecny GE, O’Callaghan C, et al (2004) Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 96(10):739–749PubMedGoogle Scholar
  29. 29.
    Geyer CE, Forster J, Lindquist D, et al (2006) Lapatinib plus capécitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743PubMedGoogle Scholar
  30. 30.
    Cameron D, Casey M, Press M, et al (2008) A phase III randomized comparison of lapatinib plus capécitabine vs capécitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112(3):533–543PubMedGoogle Scholar
  31. 31.
    von Minckwitz G, du Bois A, Schmidt M, et al (2009) Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03–05 study. J Clin Oncol 27(12):1999–2006Google Scholar
  32. 32.
    Montemurro F, Viale G, Donadio M, et al (2007) Retrospective evaluation of clinical outcomes in HER2-positive advanced breast cancer patients progressing on trastuzumab-based therapy in the pre-lapatinib era. San Antonio Breast Cancer SymposiumGoogle Scholar
  33. 33.
    Metro G, Sperduti I, Russillo M, et al (2007) Clinical utility of continuing trastuzumab beyond brain progression in HER2-positive metastatic breast cancer. Oncologist 12(12):1467–1469; author reply 1469–71PubMedGoogle Scholar
  34. 34.
    Cancello G, Montagna E, D’Agostino D, et al (2008) Continuing trastuzumab beyond disease progression: outcomes analysis in patients with metastatic breast cancer. Breast Cancer Res 10(4):R60.PubMedGoogle Scholar
  35. 35.
    Fabi A, Metro G, Ferretti G, et al (2008) Do HER2-positive metastatic breast cancer patients benefit from the use of trastuzumab beyond disease progression? A mono-institutional experience and systematic review of observational studies. Breast (Edinburgh, Scotland) 17(5):499–505Google Scholar
  36. 36.
    Seidman A, Hudis C, Pierri MK, et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20(5):1215–1221PubMedGoogle Scholar
  37. 37.
    Ewer MS, Lippman SM. (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23(13):2900–2902PubMedGoogle Scholar
  38. 38.
    Suter TM, Cook-Bruns N, Barton C (2004) Cardiotoxicity associated with trastuzumab (Herceptin®) therapy in the treatment of metastatic breast cancer. Breast (Edinburgh, Scotland) 13(3): 173–183Google Scholar
  39. 39.
    Suter TM, Procter M, van Veldhuisen DJ, et al (2007) Trastuzumab-associated cardiac adverse effects in the Herceptin® adjuvant trial. J Clin Oncol 25(25):3859–3865PubMedGoogle Scholar
  40. 40.
    Negro A, Brar BK, Lee KF (2004) Essential roles of HER2/ ErbB2 in cardiac development and function. Recent Prog Horm Res 59:1–12PubMedGoogle Scholar
  41. 41.
    Crone SA, Zhao YY, Fan L, et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8(5):459–465PubMedGoogle Scholar
  42. 42.
    Sawyer DB, Zuppinger C, Miller TA, et al (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-ErbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105(13): 1551–1554PubMedGoogle Scholar
  43. 43.
    Venturini M, Bighin C, Monfardini S, et al (2006) Multicenter phase II study of trastuzumab in combination with epirubicin and docetaxel as first-line treatment for HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat 95(1):45–53PubMedGoogle Scholar
  44. 44.
    O’Brien ME, Wigler N, Inbar M, et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (Caelyx/Doxil®) vs conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449PubMedGoogle Scholar
  45. 45.
    Harris L, Batist G, Belt R, et al (2002) Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94(1):25–36PubMedGoogle Scholar
  46. 46.
    Untch M, Tjulandin S, Jonat W, et al (2009) Evaluation of firstline trastuzumab in combination with epirubicin/cyclophosphamide for patients with HER2-positive metastatic breast cancer. Clin Breast Cancer 9:23–28Google Scholar
  47. 47.
    Gennari A, Biadi O, Danesi R, et al (2006) Cardiotoxicity of other anthracyclines and anthracycline analogues. Cancer and the heart, 33–41Google Scholar
  48. 48.
    Theodoulou M, Hudis C (2004) Cardiac profiles of liposomal anthracyclines: greater cardiac safety vs conventional doxorubicin? Cancer 100(10):2052–2063PubMedGoogle Scholar
  49. 49.
    Slamon D, Eiermann W, Robert N, et al (2009) Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab in HER2/neu-positive early breast cancer patients: BCIRG 006 Study Cancer Research 69:500s.Google Scholar
  50. 50.
    Gomez HL, Doval DC, Chavez MA, et al (2008) Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26(18): 2999–3005PubMedGoogle Scholar
  51. 51.
    Burstein HJ, Storniolo AM, Franco S, et al (2008) A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer. Ann Oncol 19(6):1068–1074PubMedGoogle Scholar
  52. 52.
    Toi M, Iwata H, Fujiwara Y, et al (2009) Lapatinib monotherapy in patients with relapsed, advanced, or metastatic breast cancer: efficacy, safety, and biomarker results from Japanese patients phase II studies. Br J Cancer 101(10):1676–1682PubMedGoogle Scholar
  53. 53.
    O’shaughnessy J, Blackwell K, Burstein H, et al (2008) A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. ASCO Annual Meeting 2008Google Scholar
  54. 54.
    Blackwell K, Burstein H, Sledge G, et al (2009) Updated survival analysis of a randomized study of lapatinib alone or in combination with trastuzumab in women with HER2-positive metastatic breast cancer progressing on trastuzumab therapy. Cancer Res 69:499sGoogle Scholar
  55. 55.
    Bendell JC, Domchek SM, Burstein HJ, et al (2003) Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97(12):2972–2977PubMedGoogle Scholar
  56. 56.
    Shmueli E, Wigler N, Inbar M (2004) Central nervous system progression among patients with metastatic breast cancer responding to trastuzumab treatment. Eur J Cancer 40(3):379–382PubMedGoogle Scholar
  57. 57.
    Clayton AJ, Danson S, Jolly S, et al (2004) Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. Br J Cancer 91(4):639–643PubMedGoogle Scholar
  58. 58.
    Lower EE, Drosick DR, Blau R, et al (2003) Increased rate of brain metastasis with trastuzumab therapy not associated with impaired survival. Clin Breast Cancer 4(2):114–119PubMedGoogle Scholar
  59. 59.
    Gori S, Rimondini S, De Angelis V, et al (2007) Central nervous system metastases in HER2-positive metastatic breast cancer patients treated with trastuzumab: incidence, survival, and risk factors. Oncologist 12(7):766–773PubMedGoogle Scholar
  60. 60.
    Park IH, Ro J, Lee KS, et al (2009) Trastuzumab treatment beyond brain progression in HER2-positive metastatic breast cancer. Ann Oncol 20(1):56–62PubMedGoogle Scholar
  61. 61.
    Kirsch DG, Ledezma CJ, Mathews CS, et al (2005) Survival after brain metastases from breast cancer in the trastuzumab era. J Clin Oncol 23(9):2114–2116 [author reply 2116–7]PubMedGoogle Scholar
  62. 62.
    Lin NU, Dieras V, Paul D, et al (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15(4):1452–1459PubMedGoogle Scholar
  63. 63.
    Gril B, Palmieri D, Bronder JL, et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J N Cancer Inst 100(15):1092–1103Google Scholar
  64. 64.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672PubMedGoogle Scholar
  65. 65.
    Romond EH, Perez EA, Bryant J, et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684PubMedGoogle Scholar
  66. 66.
    Smith I, Procter M, Gelber RD, et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36PubMedGoogle Scholar
  67. 67.
    Tan-Chiu E, Yothers G, Romond E, et al (2005) Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23(31):7811–7819PubMedGoogle Scholar
  68. 68.
    Perez EA, Suman VJ, Davidson NE, et al (2008) Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central Cancer Treatment Group N9831 adjuvant breast cancer trial. J Clin Oncol 26(8):1231–1238PubMedGoogle Scholar
  69. 69.
    Joensuu H, Bono P, Kataja V, et al (2009) Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J Clin Oncol 27(34):5685–5692PubMedGoogle Scholar
  70. 70.
    Bria E, Cuppone F, Fornier M, et al (2008) Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res Treat 109(2):231–239PubMedGoogle Scholar
  71. 71.
    Fisher B, Brown A, Mamounas E, et al (1997) Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 15(7):2483–2493PubMedGoogle Scholar
  72. 72.
    Fisher B, Bryant J, Wolmark N, et al (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16(8):2672–2685PubMedGoogle Scholar
  73. 73.
    Mauri D, Pavlidis N, Ioannidis JP (2005) Neoadjuvant vs adjuvant systemic treatment in breast cancer: a meta-analysis. J N Cancer Inst 97(3):188–194Google Scholar
  74. 74.
    Kaufmann M, Hortobagyi GN, Goldhirsch A, et al (2006) Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol 24(12):1940–1949PubMedGoogle Scholar
  75. 75.
    Coudert BP, Arnould L, Moreau L, et al (2006) Pre-operative systemic (neoadjuvant) therapy with trastuzumab and docetaxel for HER2-overexpressing stage II or III breast cancer: results of a multicenter phase II trial. Ann Oncol 17(3):409–414PubMedGoogle Scholar
  76. 76.
    Buzdar AU, Ibrahim NK, Francis D, et al (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23(16): 3676–3685PubMedGoogle Scholar
  77. 77.
    Buzdar AU, Valero V, Ibrahim NK, et al (2007) Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 13(1):228–233PubMedGoogle Scholar
  78. 78.
    Coudert BP, Largillier R, Arnould L, et al (2007) Multicenter phase II trial of neoadjuvant therapy with trastuzumab, docetaxel, and carboplatin for human epidermal growth factor receptor 2-overexpressing stage II or III breast cancer: results of the GETN(A)-1 trial. J Clin Oncol 25(19):2678–2684PubMedGoogle Scholar
  79. 79.
    Hurley J, Doliny P, Reis I, et al (2006) Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol 24(12):1831–1838PubMedGoogle Scholar
  80. 80.
    Gianni L, Eiermann W, Semiglazov V, et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab vs neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375(9712):377–384PubMedGoogle Scholar
  81. 81.
    Esteva FJ, Valero V, Booser D, et al (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(7): 1800–1808PubMedGoogle Scholar
  82. 82.
    Meden H, Beneke A, Hesse T, et al (2001) Weekly intravenous recombinant humanized anti-P185HER2 monoclonal antibody (Herceptin®) plus docetaxel in patients with metastatic breast cancer: a pilot study. Anticancer Res 21(2B):1301–1305PubMedGoogle Scholar
  83. 83.
    Montemurro F, Choa G, Faggiuolo R, et al (2004) A phase II study of three-weekly docetaxel and weekly trastuzumab in HER2-overexpressing advanced breast cancer. Oncology 66(1):38–45PubMedGoogle Scholar
  84. 84.
    Sato N, Sano M, Tabei T, et al (2006) Combination docetaxel and trastuzumab treatment for patients with HER2-overexpressing metastatic breast cancer: a multicenter, phase-II study. Breast Cancer (Tokyo, Japan) 13(2):166–171Google Scholar
  85. 85.
    Seidman AD, Fornier MN, Esteva FJ, et al (2001) Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 19(10):2587–2595PubMedGoogle Scholar
  86. 86.
    Tedesco KL, Thor AD, Johnson DH, et al (2004) Docetaxel combined with trastuzumab is an active regimen in HER2 3+ overexpressing and fluorescent in situ hybridization-positive metastatic breast cancer: a multi-institutional phase II trial. J Clin Oncol 22(6):1071–1077PubMedGoogle Scholar
  87. 87.
    Tolaney SM, Najita J, Chen W, et al (2008) A phase II study of ixabepilone plus trastuzumab for metastatic HER2-positive breast cancer. San Antonio Breast Cancer Symposium, San AntonioGoogle Scholar
  88. 88.
    Pegram MD, Slamon DJ (1999) Combination therapy with trastuzumab (Herceptin?) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 26(4 Suppl 12):89–95PubMedGoogle Scholar
  89. 89.
    Pegram MD, Pienkowski T, Northfelt DW, et al (2004) Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J N Cancer Inst 96(10):759–769Google Scholar
  90. 90.
    Ruiz M, Salvador J, Bayo J, et al (2008) Phase-II study of weekly schedule of trastuzumab, paclitaxel, and carboplatin followed by a week off every 28 days for HER2+ metastatic breast cancer. Cancer Chemother Pharmacol 62(6):1085–1090PubMedGoogle Scholar
  91. 91.
    Bartsch R, Wenzel C, Altorjai G, et al (2007) Capecitabine and trastuzumab in heavily pretreated metastatic breast cancer. J Clin Oncol 25(25):3853–3858PubMedGoogle Scholar
  92. 92.
    Schaller G, Fuchs I, Gonsch T, et al (2007) Phase II study of capécitabine plus trastuzumab in human epidermal growth factor receptor 2-overexpressing metastatic breast cancer pretreated with anthracyclines or taxanes. J Clin Oncol 25(22):3246–3250PubMedGoogle Scholar
  93. 93.
    Yamamoto D, Iwase S, Kitamura K, et al (2008) A phase II study of trastuzumab and capécitabine for patients with HER2-overexpressing metastatic breast cancer: Japan Breast Cancer Research Network (JBCRN) 00 Trial. Cancer Chemother Pharmacol 61(3):509–514PubMedGoogle Scholar
  94. 94.
    Bayo-Calero JL, Mayordomo JI, Sanchez-Rovira P, et al (2008) A phase II study of weekly vinorelbine and trastuzumab in patients with HER2-positive metastatic breast cancer. Clin Breast Cancer 8(3):264–268PubMedGoogle Scholar
  95. 95.
    Burstein HJ, Harris LN, Marcom PK, et al (2003) Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J Clin Oncol 21(15):2889–2895PubMedGoogle Scholar
  96. 96.
    Jahanzeb M, Mortimer JE, Yunus F, et al (2002) Phase II trial of weekly vinorelbine and trastuzumab as first-line therapy in patients with HER2+ metastatic breast cancer. Oncologist 7(5):410–417PubMedGoogle Scholar
  97. 97.
    Bartsch R, Wenzel C, Pluschnig U, et al (2006) Oral vinorelbine alone or in combination with trastuzumab in advanced breast cancer: results from a pilot trial. Cancer Chemother Pharmacol 57(5): 554–558PubMedGoogle Scholar
  98. 98.
    Catania C, Medici M, Magni E, et al (2007) Optimizing clinical care of patients with metastatic breast cancer: a new oral vinorelbine plus trastuzumab combination. Ann Oncol 18(12):1969–1975PubMedGoogle Scholar
  99. 99.
    Chan A (2007) A review of the use of trastuzumab (Herceptin®) plus vinorelbine in metastatic breast cancer. Ann Oncol 18(7): 1152–1158PubMedGoogle Scholar
  100. 100.
    Infante JR, Yardley DA, Burris HA 3rd, et al (2009) Phase II trial of weekly docetaxel, vinorelbine, and trastuzumab in the first-line treatment of patients with HER2-positive metastatic breast cancer. Clin Breast Cancer 9(1):23–28PubMedGoogle Scholar
  101. 101.
    Yardley DA, McCleod M, Rubin M, et al (2008) Final results of a first-line multicenter phase II metastatic breast cancer trial of vinflunine monotherapy and in combination with trastuzumab in HER+ patients. San Antonio Breast Cancer Symposium 2008, San AntonioGoogle Scholar
  102. 102.
    O’shaughnessy JA, Vukelja S, Marsland T, et al (2004) Phase II study of trastuzumab plus gemcitabine in chemotherapypretreated patients with metastatic breast cancer. Clin Breast Cancer 5(2):142–147PubMedGoogle Scholar
  103. 103.
    Bartsch R, Wenzel C, Gampenrieder SP, et al (2008) Trastuzumab and gemcitabine as salvage therapy in heavily pre-treated patients with metastatic breast cancer. Cancer Chemother Pharmacol 62(5):903–910PubMedGoogle Scholar
  104. 104.
    Loesch D, Asmar L, McIntyre K, et al (2008) Phase II trial of gemcitabine/carboplatin (plus trastuzumab in HER2-positive disease) in patients with metastatic breast cancer. Clin Breast Cancer 8(2):178–186PubMedGoogle Scholar
  105. 105.
    Burstein HJ, Harris LN, Gelman R, et al (2003) Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol 21(1):46–53PubMedGoogle Scholar
  106. 106.
    Van Pelt AE, Mohsin S, Elledge RM, et al (2003) Neoadjuvant trastuzumab and docetaxel in breast cancer: preliminary results. Clin Breast Cancer 4(5):348–353PubMedGoogle Scholar
  107. 107.
    Wenzel C, Hussian D, Bartsch R, et al (2004) Preoperative therapy with epidoxorubicin and docetaxel plus trastuzumab in patients with primary breast cancer: a pilot study. J Cancer Res Clin Oncol 130(7):400–404PubMedGoogle Scholar
  108. 108.
    Sano M, Tabei T, Suemasu K, et al (2006) Multicenter phase II trial of thrice-weekly docetaxel and weekly trastuzumab as preoperative chemotherapy in patients with HER 2-overexpressing breast cancer — Japan East Cancer Center Breast Cancer Consortium (JECBC) 02 Trial. Gan To Kagaku Ryoho 33(10): 1411–1415PubMedGoogle Scholar
  109. 109.
    Andre F, Mazouni C, Liedtke C, et al (2008) HER2 expression and efficacy of preoperative paclitaxel/FAC chemotherapy in breast cancer. Breast Cancer Res Treat 108(2):183–190PubMedGoogle Scholar
  110. 110.
    Harris LN, You F, Schnitt SJ, et al (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 13(4): 1198–1207PubMedGoogle Scholar
  111. 111.
    Limentani SA, Brufsky AM, Erban JK, et al (2007) Phase II study of neoadjuvant docetaxel, vinorelbine, and trastuzumab followed by surgery and adjuvant doxorubicin plus cyclophosphamide in women with human epidermal growth factor receptor 2-overexpressing locally advanced breast cancer. J Clin Oncol 25(10):1232–1238PubMedGoogle Scholar
  112. 112.
    Mehta SR, Schubbert TDH (2004) High pathological complete remission rate following neoadjuvant taxane, carboplatin and trastuzumab therapy after doxorubicin and cyclophosphamide in HER2-positive breast cancer patients. San Antonio Breast Cancer Symposium, San AntonioGoogle Scholar
  113. 113.
    Paluch-Shimon S, Wolf I, Goldberg H, et al (2008) High efficacy of pre-operative trastuzumab combined with paclitaxel following doxorubicin & cyclophosphamide in operable breast cancer. Acta Oncol 47(8):1564–1569PubMedGoogle Scholar
  114. 114.
    Schiffhauer LM, Griggs JJ, Ahrendt GM, et al (2003) Docetaxel and trastuzumab as primary systemic therapy for HER2/neuoverexpressing breast cancer. American Society of Clinical Oncology Annual Meeting, ChicagoGoogle Scholar
  115. 115.
    Bines J, Murad A, Lago S, et al (2003) Multicenter brazilian study of weekly docetaxel and trastuzumab as primary therapy in stage III, HER2 overexpressing breast cancer. American Society of Clinical Oncology Annual Meeting, ChicagoGoogle Scholar
  116. 116.
    Lybaert W, Wildiers H, P N. (2006) Multicenter phase II study of neoadjuvant capecitabine (X), docetaxel (T) ± trastuzumab (H) for patients (pts) with locally advanced breast cancer (LABC): preliminary safety and efficacy data. Breast Cancer Res Treat 100(Suppl) 147–148Google Scholar
  117. 117.
    Tripathy D, Moisa CSG (2007) Neoadjuvant capécitabine plus docetaxel ± trastuzumab therapy for recently diagnosed breast cancer: phase II results. Breast Cancer Res Treat 106(Suppl 1): S226Google Scholar
  118. 118.
    Han HS, Doliny P, Blaya M, et al (2007) Dose-dense docetaxel, carboplatinum and trastuzumab as neoadjuvant therapy for human epidermal growth factor receptor 2-positive stage II and III breast cancer. San Antonio Breast Cancer Symposium, San AntonioGoogle Scholar
  119. 119.
    Sikov WM, Fenton MA, Strenger R, et al (2007) Preliminary recurrence and survival analysis of patients (pts) receiving neoadjuvant q4week carboplatin and weekly paclitaxel + weekly trastuzumab in resectable and locally advanced breast cancer: update of BrUOG BR-95. San Antonio Breast Cancer Symposium, San AntonioGoogle Scholar
  120. 120.
    Chia S, Bryce C, Pansegrau G, et al (2008) Phase II trial of neoadjuvant chemotherapy of sequential FEC100 followed by docetaxel, carboplatin and trastuzumab (TCH) for HER2 overexpressing locally advanced breast cancer (LABC): a multicentre study from British Columbia. San Antonio Breast Cancer Symposium, San AntonioGoogle Scholar
  121. 121.
    Wildiers H, Neven P, Christiaens MR, et al (2008) Multicenter phase II study of neoadjuvant capécitabine (X), docetaxel (T) trastuzumab (H) for patients (pts) with locally advanced breast cancer (LABC): final analysis. San Antonio Breast Cancer Symposium, San AntonioGoogle Scholar
  122. 122.
    Cristofanilli M, Boussen H, J. B. (2006) A phase II combination study of lapatinib and paclitaxel as neoadjuvant therapy in patients with newly diagnosed inflammatory breast cancer. Breast Cancer Res Treat 100(Suppl 1):S5#1Google Scholar

Copyright information

© Springer Verlag France 2010

Authors and Affiliations

  • S. Guiu
    • 1
  • I. Adoubi
    • 2
  • J. C. Kouassi Comoe
    • 3
  • P. Fumoleau
    • 1
  • B. Coudert
    • 1
  1. 1.Département d’oncologie médicalecentre de lutte contre le cancer Georges-François-LeclercDijonFrance
  2. 2.Service de cancérologieCHU de TreichvilleAbidjanCôte-d’Ivoire
  3. 3.Programme national de lutte contre le cancerAbidjanCôte-d’Ivoire

Personalised recommendations