Advertisement

Design of a Series Elastic Tendon Actuator Based on Gait Analysis for a Walking Assistance Exosuit

  • Hee Don LeeEmail author
  • Jeon Il Moon
  • Tae Hun KangEmail author
Article
  • 29 Downloads

Abstract

Exosuits are wearable robots that enhance a person’s muscular strength from outside the body. Many exosuits use tendon actuators with multiple wires that work similarly to human muscles to minimize user unfamil-iarity caused by the discrepancy between the human body’s degree of freedom and the influence of the mass of the exoskeleton. This paper describes the design of a series elastic tendon actuator (SETA) to be used in exosuits. The SETA performs the agonist and antagonist functions of human muscles using two internal wires as well as elastic elements (springs) to measure the human-robot interaction force and overcome differences in variations occurring between the wires. We defined design objectives and selected the main components based on biomechanical gait analysis to design a small SETA. Moreover, we conducted an experiment to verify the basic performance of our SETA design.

Keywords

Actuator module design exosuit series elastic actuator walking assistance robot wearable robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. [1]
    H. D. Lee, W. S. Kim, J. S. Han, and C. S. Han, “The technical trend of the exoskeleton robot system for power assistance,” International Journal of Precision Engineering and Manufacturing, vol. 13, no. 8, pp. 1491–1497, 2012.CrossRefGoogle Scholar
  2. [2]
    H. G. Kim, J. W. Lee, J. H. Jang, S. D. Park, and C. S. Han, “Design of an exoskeleton with minimized energy consumption based on using elastic and dissipative elements,” International Journal of Control, Automation and Systems, vol. 13, no. 2, pp. 463–474, 2015.CrossRefGoogle Scholar
  3. [3]
    H. Y. Jang, Y. H. Ji, J. S. Han, A. M. Khan, J. Y. Ahn, and C. S. Han, “Development and verification of upper extremities wearable robots to aid muscular strength with the optimization of link parameters,” International Journal of Precision Engineering and Manufacturing, vol. 16, no. 12, pp. 2569–2575, 2015.CrossRefGoogle Scholar
  4. [4]
    Z. Li and Z. Yin, “Zhang dynamics based tracking control of knee exoskeleton with time-dependent inertial and viscous parameters,” International Journal of Control, Automation and Systems, vol. 16, no. 2 pp. 904–911, 2018.CrossRefGoogle Scholar
  5. [5]
    M. Rahmani, M. H. Rahman, and J. Ghommam, “A 7-DoF upper limb exoskeleton robot control using a new robust hybrid controller,” International Journal of Control, Automation and Systems, vol. 17, no. 4, pp. 986–994, 2019.CrossRefGoogle Scholar
  6. [6]
    A. T. Asbeck, R. J. Dyer, A. F. Larusson, and C. J. Walsh, “Biologically-inspired Soft Exosuit,” Proc. of IEEE International Conference on Rehabilitation Robotics, pp. 1–8, 2013.Google Scholar
  7. [7]
    N. Karavas, J. Kim, I. Galiana, Y. Ding, A. Couture, D. Wagner, A. Eckert-Erdheim, and C. J. Walsh, “Autonomous soft exosuit for hip extension assistance,” Wearable Robotics: Challenges and Trends, Springer International Publishing, pp. 331–335, Springer, Cham, 2017.CrossRefGoogle Scholar
  8. [8]
    Y. Ding, F. A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana, K. G. Holt, and C. J. Walsh, “Effect of timing of hip extension assistance during loaded walking with a soft exosuit,” Journal of Neuroengineering and Rehabilitation, vol. 13, no. 1, pp. 87, 2016.CrossRefGoogle Scholar
  9. [9]
    Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop optimization of hip assistance with a soft exosuit during walking,” Science Robotics, vol. 3, no. 15, p. eaar5438, 2018.CrossRefGoogle Scholar
  10. [10]
    S. Lessard, P. Pansodtee, A. Robbins, J. M. Trombadore, S. Kurniawan, and M. Teodorescu, “A soft exosuit for flexible upper-extremity rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 8, pp. 1604–1617, 2018.CrossRefGoogle Scholar
  11. [11]
    M. Xiloyannis, E. Annese, M. Canesi, A. Kodian, A. Bicchi, S. Micera, A. Ajoudani, and L. Masia, “Design and validation of a modular one-to-many actuator for a soft wearable exosuitb,” Frontiers in Neurorobotics, vol. 13, p. 39, 2019.CrossRefGoogle Scholar
  12. [12]
    K. Schmidt, J. E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C. S. Easthope, and R. Riener, “The myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers,” Frontiers in Neuro-robotics, vol. 11, p. 57, 2017.CrossRefGoogle Scholar
  13. [13]
    A. T. Asbeck, S. M. De Rossi, K. G. Holt, and C. J. Walsh, “A biologically inspired soft exosuit for walking assistance,” The International Journal of Robotics Research, vol. 34, no. 6, pp. 744–762, 2015.CrossRefGoogle Scholar
  14. [14]
    K. Schmidt, J. E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C. S. Easthope, and R. Riener, “The myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers,” Frontiers in neuro-robotics, vol. 11, Article 57, 2017.CrossRefGoogle Scholar
  15. [15]
    Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S. M. M. De Rossi, and C. J. Walsh, “Multi-joint actuation platform for lower extremity soft exosuits,” Proc. IEEE Int. Conf. Robotics Automation (ICRA), pp. 1327–1334, 2014.Google Scholar
  16. [16]
    L. Cappello, D. K. Binh, S. C. Yen, and L. Masia, “Design and preliminary characterization of a soft wearable exoskeleton for upper limb,” Proc. IEEE Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), pp. 623–630, 2016.Google Scholar
  17. [17]
    B. K. Dinh, M. Xiloyannis, L. Cappello, C. W. Antuvan, S. C. Yen, and L. Masia, “Adaptive backlash compensation in upper limb soft wearable exoskeletons,” Robotics and Autonomous Systems, vol. 92, pp. 173–186, 2017.CrossRefGoogle Scholar
  18. [18]
    G. A. Pratt and M. M. Williamson, “Series elastic actuators,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 399–406, 1995.Google Scholar
  19. [19]
    S. Oh and K. Kong, “High-precision robust force control of a series elastic actuator,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 71–80, 2016.CrossRefGoogle Scholar
  20. [20]
    Size Korea, “The 7th dimension of korean human body, https://doi.org/sizekorea.kr/page/report/1
  21. [21]
    A. Zoss and H. Kazerooni, “Design of an electrically actuated lower extremity exoskeleton,” Advanced Robotics, vol. 20, no. 9, pp. 967–988, April, 2006.CrossRefGoogle Scholar
  22. [22]
    W. Kim, H. Lee, D. Kim, J. Han, and C. Han, “Mechanical design of the Hanyang exoskeleton assistive robot (HEXAR),” Proc. of 14th International Conference on Control, Automation and Systems (ICCAS 2014), pp. 479–484, 2014.Google Scholar

Copyright information

© ICROS, KIEE and Springer 2019

Authors and Affiliations

  1. 1.Convergence Research Center for Collaborative RobotDaegu Gyeongbuk Institute of Science & TechnologyDaeguKorea
  2. 2.Korea Institute for Robot Industry Advancement (KIRIA)DaeguKorea

Personalised recommendations