Advertisement

Novel Design of Master Manipulator for Robotic Catheter System

  • Youngjin Moon
  • Zhenkai Hu
  • Jongseok Won
  • Sanghoon Park
  • Hoyul Lee
  • Hyeonseok You
  • Gi-Byoung Nam
  • Jaesoon Choi
Regular Papers Robot and Applications
  • 16 Downloads

Abstract

This paper presents a new master manipulator applied to robotic systems for arrhythmia ablation. The manipulator is designed to implement the concept of two different master-slave teleoperation controls in the clinical application. One is the conventional control between the master and catheter-handle in the slave site and the other is catheter tip manipulation corresponding the master motion. For the purpose, the master has six degrees of freedom (DOF) and consists of three main components: a spherical mechanism for rotational motion of 2-DOF, 3-RRR planar parallel mechanism with 3-DOF, and counter-weight lifting mechanism for the vertical movement. Two mechanisms except the lifting mechanism are parallel chains and structurally more complicated. Therefore, their forward kinematics are analyzed, and workspaces are simulated. To evaluate the applicability for robotic catheter systems, the manipulator prototype was tested for its smoothness, workspace, and teleoperation performance. The subjects in the smoothness test reported no considerable friction and jerk in free movement in the three-dimensional space as shown in the recorded curves. The workspace test shows the actual workspace is similar to the simulated one except some structural constraints in the 3-RRR mechanism. For the last test, a robotic catheter teleoperation system with a slave robot and the software structure for the robotic catheter control system with electrical connection of each component were built. The result performed by five different users shows the motion of the slave robot well tracks that of the master device with small average errors and time delay that are acceptable in robotic catheter teleoperation systems.

Keywords

EP catheter robot master device master-slave system robotic interventional system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, J. Abraham, T. Adair, R. Aggarwal, S. Y. Ahn, M. A. AlMazroa, M. Alvarado, H. R. Anderson, L. M. Anderson, K. G. Andrews, C. Atkinson, L. M. Baddour, S. Barker-Collo, D. H. Bartels, M. L. Bell, E. J. Benjamin, D. Bennett, K. Bhalla, B. Bikbov, A. B. Abdulhak, G. Birbeck, F. Blyth, I. Bolliger, S. Boufous, C. Bucello, M. Burch, P. Burney, J. Carapetis, H. Chen, D. Chou, S. S. Chugh, L. E. Coffeng, S. D. Colan, S. Colquhoun, K. E. Colson, J. Condon, M. D. Connor, L. T. Cooper, M. Corriere, M. Cortinovis, K. C. de Vaccaro, W. Couser, B. C. Cowie, M. H. Criqui, M. Cross, K. C. Dabhadkar, N. Dahodwala, D. De Leo, L. Degenhardt, A. Delossantos, J. Denenberg, D. C. Des Jarlais, S. D. Dhamaratne, E. R. Dorsey, T. Driscoll, H. Duber, B. Ebel, P. J. Erwin, P. Espindola, M. Ezzati, V. Feigin, A. D. Flaxman, M. H. Forouzanfar, F. G. R. Fowkes, R. Frankin, M. Fransen, M. K. Freeman, S. E. Gabriel, E. Gakidou, F. Gaspari, R. F. Gillum, D. Gonzalez-Medina, Y. A. Halasa, D. Haring, J. E. Harrison, R. Havmoeller, R. J. Hay, B. Hoen, P. J. Hotez, D. Hoy, K. H. Jacobsen, S. L. James, R. Jasrasaria, S. Jayaraman, N. Johns, G. Karthikeyan, N. Kassebaum, A. Karen, J-P. Khoo, L. M. Knowlton, O. Kobusingye, A. Koranteng, R. Krishnamurthi, M. Lipnick, S. E. Lipshultz, S. L. Ohno, J. Mabweijano, M. F. Maclntyre, L. Malliger, L. March, G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos, B. M. Mayosi, J. H. McAnulty, M. M. McDermott, J. McGrath, Z. A. Memish, G. A. Mensah, T. R. Merriman, C. Michaud, M. Miller, T. R. Miller, C. Mock, A. O. Mocumbi, A. A. Mokdad, A. Moran, K. Mullholland, M. N. Nair, L. Naldi, K. M. V. Narayan, K. Nasseri, P. Norman, M. O’Donnell, S. B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, B. Pahari, J. D. Pandian, A. P. Rivero, R. P. Padilla, F. Perez-Ruiz, N. Perico, D. Phillips, K. Pierce, C. A. Pope III, E. Prorrini, F. Pourmalek, M. Raju, D. Ranganathan, J. T. Rehm, D. B. Rein, G. Remuzzi, F. P. Rivara, T. Roberts, F. R. De Leon, L. C. Rosenfeld, L. Rushton, R. L. Sacco, J. A. Salomon, U. Sampson, E. Sanman, D. C. Schwebel, M. Segui-Gomez, D. S. Shepard, D. Singh, J. Singleton, K. Silwa, E. Smith, A. Steer, J. A. Taylor, B. Thomas, I. M. Tleyjeh, J. A. Towbin, T. Truelsen, E. A. Undurranga, N. Venketasubramanian, L. Vijayakumar, T. Vos, G. R. Wagner, M. Wang, W. Wng, K. Watt, M. A. Weinstock, R. Weintraub, J. D. Wilkinson, A. D. Woolf, S. Wulf, P-H. Yeh, P. Yip, A. Zabetian, Z-J. Zheng, A. D. Lopez, and C. JL. Murray, “Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010,” The Lancet, vol. 380, no. 3859, pp. 2095–2128, 2013.Google Scholar
  2. [2]
    Q. Liu, B. P. Yan, C.-M. Yu, Y.-T. Zhang, and C. C. Poon, “Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 2, pp. 346–352, 2014.CrossRefGoogle Scholar
  3. [3]
    Y.-T. Zhang, Y.-L. Zheng, W.-H. Lin, H.-Y. Zhang, and X.-L. Zhou, “Challenges and opportunities in cardiovascular health informatics,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 3, pp. 633–642, 2013.CrossRefGoogle Scholar
  4. [4]
    D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci, M. Nobuyoshi, M. Cleman, R. Heuser, D. Almond, P. S. Teirstein, R. D. Fish, A. Colombo, J. Brinker, J. Moses, A. Shaknovich, J. Hirshfeld, S. Bailey, S. Ellis, R. Rake, and S. Goldberg, “A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease,” New England Journal of Medicine, vol. 331, no. 8, pp. 496–501, 1994.CrossRefGoogle Scholar
  5. [5]
    M. Haissaguerre, P. Jais, D. C. Shah, L. Gencel, V. Pradeau, S. Garrigues, S. Chouairi, M. Hocini, P. LE Metayer, R. Roudaut, and J. Clementy, “Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 7, no. 12, pp. 1132–1144, 1996.CrossRefGoogle Scholar
  6. [6]
    M. E. Josephson, Clinical Cardiac Electrophysiology: Techniques and Interpretations, Lippincott Williams & Wilkins, 2008.Google Scholar
  7. [7]
    K. A. Hausegger, P. Schedlbauer, H. A. Deutschmann, and K. Tiesenhausen, “Complications in endoluminal repair of abdominal aortic aneurysms,” European Journal of Radiology, vol. 39, no. 1, pp. 22–33, 2001.CrossRefGoogle Scholar
  8. [8]
    Y. Thakur, J. S. Bax, D. W. Holdsworth, and M. Drangova, “Design and performance evaluation of a remote catheter navigation system,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 7, pp. 1901–1908, 2009.CrossRefGoogle Scholar
  9. [9]
    Hansen Medical Inc: http://www.hansenmedical.com/ [Accessed February 2018..Google Scholar
  10. [10]
    Corindus Vascular Robotics Inc: http://www.corindus. com/ [Accessed February 2018..Google Scholar
  11. [11]
    Stereotaxis Inc: http://www.stereotaxis.com/ [Accessed February 2018..Google Scholar
  12. [12]
    Catheter Robotics Inc: http://catheterrobotics.com/CRUSmain. htm [Accessed February 2018..Google Scholar
  13. [13]
    Magnetics Inc: http://www.magnetecs.com/overview.php [Accessed February 2018..Google Scholar
  14. [14]
    P. Kanagaratnam, M. Koa-Wing, D. T. Wallace, A. S. Goldenberg, N. S. Peters, and D. W. Davies, “Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath,” Journal of Interventional Cardiac Electrophysiology, vol. 21, no. 1, pp. 19–26, 2008.CrossRefGoogle Scholar
  15. [15]
    M. Koa-Wing, P. Kanagaratnam, D. Wallace, B. Willis, R.A. Kaba, P. Kojodjojo, M. J. Wright, P. B. Lim, N. S. Peters, and D. W. Davies, “Initial experience of catheter ablation using a novel remotely steerable catheter sheath system,” HEART Rhythm, vol. 4, no. 5, pp. A60-A61, 2007.Google Scholar
  16. [16]
    M. Schiemann, R. Killmann, M. Kleen, N. Abolmaali, J. Finney, and T. J. Vogl, “Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom,” Radiology, vol. 232, no. 2, pp. 475–481, 2004.CrossRefGoogle Scholar
  17. [17]
    M. A. Tavallaei, Y. Thakur, S. Haider, and M. Drangova, “A magnetic-resonance-imaging-compatible remote catheter navigation system,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 899–905, 2013.CrossRefGoogle Scholar
  18. [18]
    G. Lim, K. Park, M. Sugihara, K. Minami, and M. Esashi, “Future of active catheters,” Sensors and Actuators A: Physical, vol. 56, no. 1–2, pp. 113–121, 1996.CrossRefGoogle Scholar
  19. [19]
    B.-K. Fang, M.-S. Ju, and C.-C. K. Lin, “A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems,” Sensors and Actuators A: Physical, vol. 137, no. 2, pp. 321–329, 2007.CrossRefGoogle Scholar
  20. [20]
    K. Ikuta, H. Ichikawa, K. Suzuki, and D. Yajima, “Multidegree of freedom hydraulic pressure driven safety active catheter,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2006), 2006.Google Scholar
  21. [21]
    K. Ikuta, Y. Matsuda, D. Yajima, and Y. Ota, “Pressure pulse drive: A control method for the precise bending of hydraulic active catheters,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 5, pp. 876–883, 2012.CrossRefGoogle Scholar
  22. [22]
    S. B. Kesner and R. D. Howe, “Position control of motion compensation cardiac catheters,” IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1045–1055, 2011.CrossRefGoogle Scholar
  23. [23]
    S. B. Kesner and R. D. Howe, “Robotic catheter cardiac ablation combining ultrasound guidance and force control,” The International Journal of Robotics Research, vol. 33, no. 4, pp. 631–644, 2014.CrossRefGoogle Scholar
  24. [24]
    P. M. Loschak, L. J. Brattain, and R. D. Howe, “Algorithms for Automatically Pointing Ultrasound Imaging Catheters,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 81–91, 2017.CrossRefGoogle Scholar
  25. [25]
    P. M. Loschak, A. Degirmenci, Y. Tenzer, C. M. Tschabrunn, E. Anter, and R. D. Howe, “A four degree of freedom robot for positioning ultrasound imaging catheters,” Journal of mechanisms and robotics, vol. 8, no. 5, pp. 051016, 2016.CrossRefGoogle Scholar
  26. [26]
    M. Khoshnam and R. V. Patel, “Robotics-assisted catheter manipulation for improving cardiac ablation efficiency,” Proc. of 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 308–313, 2014.CrossRefGoogle Scholar
  27. [27]
    M. Khoshnam, I. Khalaji, and R. V. Patel, “A roboticsassisted catheter manipulation system for cardiac ablation with real-time force estimation,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3202–3207, 2015.Google Scholar
  28. [28]
    T. Wang, D. Zhang, and L. Da, “Remote-controlled vascular interventional surgery robot,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 6, no. 2, pp. 194–201, 2010.Google Scholar
  29. [29]
    C. Meng, J. Zhang, D. Liu, B. Liu, and F. Zhou, “A remotecontrolled vascular interventional robot: system structure and image guidance,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 9, no. 2, pp. 230–239, 2013.CrossRefGoogle Scholar
  30. [30]
    G. Srimathveeravalli, T. Kesavadas, and X. Li, “Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 6, no. 2, pp. 160–170, 2010.Google Scholar
  31. [31]
    Y. Ganji, F. Janabi?Sharifi, and A. N. Cheema, “Remote controlled robot assisted cardiac navigation: feasibility assessment and validation in a porcine model,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 4, pp. 489–495, 2011.CrossRefGoogle Scholar
  32. [32]
    E. Marcelli, L. Cercenelli, and G. Plicchi, “A novel telerobotic system to remotely navigate standard electrophysiology catheters,” Computers in Cardiology, pp. 137–140, 2008.Google Scholar
  33. [33]
    Y. Thakur, D. W. Holdsworth, and M. Drangova, “Characterization of catheter dynamics during percutaneous transluminal catheter procedures,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 8, pp. 2140–2143, 2009.CrossRefGoogle Scholar
  34. [34]
    M. A. Tavallaei, M. Lavdas, D. Gelman, and M. Drangova, “Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom,” International Journal of Computer Assisted Radiology and Surgery, vol. 11, no. 8, pp. 1537–1545, 2016.CrossRefGoogle Scholar
  35. [35]
    M. A. Tavallaei, D. Gelman, M. K. Lavdas, A. C. Skanes, D. L. Jones, J. S. Bax, and M. Drangova, “Design, development and evaluation of a compact telerobotic catheter navigation system,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 12, no. 3, pp. 442–452, 2016.CrossRefGoogle Scholar
  36. [36]
    L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, 1999.Google Scholar
  37. [37]
    Z. Hu, J. Won, Y. Moon, S. Park, and J. Choi, “Design of a Robotic Catheterization Platform With Use of Commercial Ablation Catheter,” Proc. of Design of Medical Devices Conference, pp. V001T08A005-V001T08A005, 2017.Google Scholar
  38. [38]
    J. Guo, P. Wang, S. Guo, L. Shao, and Y. Wang, “Feedback force evaluation for a novel robotic catheter navigation system,” Proc. of IEEE International Conference on Mechatronics and Automation, pp. 303–308, 2014.Google Scholar
  39. [39]
    C. J. Payne, H. Rafii-Tari, and G.-Z. Yang, “A force feedback system for endovascular catheterisation,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1298–1304, 2012.Google Scholar
  40. [40]
    J. Arata, H. Kondo, N. Ikedo, and H. Fujimoto, “Hpatic device using a newly developed redundant parallel mechanism,” IEEE Transactions on Robotics, vol. 27, no. 2, pp. 201–214, 2011.CrossRefGoogle Scholar
  41. [41]
    S. E. Salcudean and J. Yan, “Toward a force-reflecting motion-scaling system for microsurgery,” Proc. of IEEE International Conference on Robotics and Automation, pp. 2296–2301, 1994.Google Scholar
  42. [42]
    S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami and E. Brdet, “On the analysis of movement smoothness,” Journal of Neuroengineering and Rehabilitation, vol. 12, no. 112, pp. 1–11, 2015.Google Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Youngjin Moon
    • 1
    • 2
  • Zhenkai Hu
    • 2
  • Jongseok Won
    • 3
  • Sanghoon Park
    • 2
  • Hoyul Lee
    • 4
  • Hyeonseok You
    • 5
  • Gi-Byoung Nam
    • 6
  • Jaesoon Choi
    • 7
  1. 1.Department of Convergence Medicine, College of MedicineUniversity of UlsanUlsanKorea
  2. 2.Biomedical Engineering Research Center, Asan Institute for Life SciencesAsan Medical CenterSeoulKorea
  3. 3.Graduate School of Convergence Science & TechnologySeoul National UniversitySeoulKorea
  4. 4.Medical Device Development CenterDaegu-Gyeongbuk Medical Innovation FoundationDaeguKorea
  5. 5.Department of Biomedical Engineering, College of MedicineUniversity of UlsanUlsanKorea
  6. 6.Department of Internal Medicine, Heart Institute, Asan Medical Center, University of Ulsan College of MedicineAsan Medical CenterSeoulKorea
  7. 7.Department of Biomedical Engineering, College of MedicineUniversity of Ulsan and Asan Medical CenterSeoulKorea

Personalised recommendations