Circumnavigation of a Moving Target in 3D by Multi-agent Systems with Collision Avoidance: An Orthogonal Vector Fields-based Approach

  • Hang Zhong
  • Yaonan Wang
  • Zhiqiang MiaoEmail author
  • Jianhao Tan
  • Ling Li
  • Hui Zhang
  • Rafael Fierro
Regular Papers Robot and Applications


The problem of circumnavigating a moving target in a three dimensional setting by a network of agents while avoiding inter-agent collisions is addressed in this paper. A distributed control strategy is proposed for the multi-agent system to achieve three objectives: reaching the target plane with predesigned orientation, circulating around the target with prescribed radius, and avoiding collisions among agents. After representing the control objectives by three potential functions, the gradient fields of which are orthogonal to each other, the control law then is developed using the gradient vector field-based approach. The novelty of the proposed controller lies in the orthogonality of the vector fields, which decouples the control objectives and ensures global asymptotic convergence to the desired motion, subject to some mild initial condition constraints. The stability and convergence analysis are presented using Lyapunov tools, and the effectiveness of the proposed control strategy is demonstrated through numerical simulations.


Circumnavigation collision avoidance multi-agent systems potential function target tracking/enclosing vector fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Ren and R. W. Beard, Distributed Consensus in Multivehicle Cooperative Control, Springer–Verlag, London, U.K., 2008.CrossRefzbMATHGoogle Scholar
  2. [2]
    F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic Networks, Princeton Univ., Princeton, NJ, 2009.zbMATHGoogle Scholar
  3. [3]
    Z. Qu, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, Springer–Verlag, London, U.K., 2009.zbMATHGoogle Scholar
  4. [4]
    M. Mesbahi and M. Egerstedt, Graph Theoretic Methods for Multi–agent Networks, Princeton Univ., Princeton, NJ, 2010.CrossRefzbMATHGoogle Scholar
  5. [5]
    W. Ren and Y. Cao, Distributed Coordination of Multi–Agent Networks, Springer–Verlag, London, U.K., 2011.CrossRefzbMATHGoogle Scholar
  6. [6]
    H. Bai, M. Arcak, and J. Wen, Cooperative Control Design: A Systematic, Passivity–based Approach, Springer–Verlag, New York, 2011.CrossRefzbMATHGoogle Scholar
  7. [7]
    E. Semsar–Kazerooni and K. Khorasani, Team Cooperation in a Network of Multi–vehicle Unmanned Systems: Synthesis of Consensus Algorithms, Springer, New York, 2012.zbMATHGoogle Scholar
  8. [8]
    F. L. Lewis, H. Zhang, K. Hengster–Movric, and A. Das, Cooperative Control of Multi–agent Systems, Springer–Verlag, London, U.K., 2014.CrossRefzbMATHGoogle Scholar
  9. [9]
    X. H. Wang and H. B. Ji, “Leader–follower consensus for a class of nonlinear multi–agent systems,” Int. J. Control, Automat. Syst., vol. 10, no. 1, pp. 27–35, 2012.CrossRefGoogle Scholar
  10. [10]
    Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi–agent coordination,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 427–438, 2013.CrossRefGoogle Scholar
  11. [11]
    J. L. Zhang, D. L. Qi, and M. Yu, “A game theoretic approach for the distributed control of multi–agent systems under directed and time–varying topology,” IEEE Trans. Ind. Informat., vol. 12, no. 4, pp.749–758, 2014.Google Scholar
  12. [12]
    K. K. Oh, M. C. Park, and H. S. Ahn, “A survey of multiagent formation control,” Automatica, vol. 53, pp. 424–440, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Olfati–Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi–agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.CrossRefzbMATHGoogle Scholar
  15. [15]
    K. K. Oh and H. S. Ahn, “Formation control of mobile agents based on distributed position estimation,” IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 737–742, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Z. Peng, G. Wen, S. Yang, and A. Rahmani, “Distributed consensus–based formation control for nonholonomic wheeled mobile robots using adaptive neural network,” Nonlinear Dynamics, vol. 68, no. 1, pp. 605–622, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    L. Asimow and B. Roth, “The rigidity of graphs,” Trans. Amer. Math. Soc., vol. 245, pp. 279–289, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    L. Asimow and B. Roth, “The rigidity of graphs, II,” J. Math. Anal. Appl., vol. 68, no. 1, pp. 171–190, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B. Hendrickson, “Conditions for unique graph realizations,” SIAM J. Comput., vol. 21, no. 1, pp. 65–84, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. M. Hendrickx, B. Anderson, J. C. Delvenne, and V. D. Blondel, “Directed graphs for the analysis of rigidity and persistence in autonomous agent systems,” Int. J. Robust Nonlin., vol. 17, no. 10–11, pp. 960–981, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    C. Yu, J. M. Hendrickx, B. Fidan, B. D. Anderson, and V. D. Blondel, “Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence,” Automatica, vol. 43, no. 3, pp. 387–402, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    B. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx, “Rigid graph control architectures for autonomous formations,” IEEE Contr. Syst. Mag., vol. 28, no. 6, pp. 48–63, 2008.CrossRefzbMATHGoogle Scholar
  23. [23]
    C. Yu, B. Anderson, S. Dasgupta, and B. Fidan, “Control of minimally persistent formations in the plane,” SIAM J. Control Optim., vol. 48, no. 1, pp. 206–233, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. V. Dimarogonas and K. H. Johansson, “Stability analysis for multi–agent systems using the incidence matrix: Quantized communication and formation control,” Automatica, vol. 46, pp. 695–700, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    F. Dorfler and B. Francis, “Geometric analysis of the formation problem for autonomous robots,” IEEE Trans. Autom. Control, vol. 55, no. 10, pp. 2379–2384, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    T. H. Summers, C. Yu, S. Dasgupta, and B. Anderson, “Control of minimally persistent leader–remote–follower and coleader formations in the plane,” IEEE Trans. Autom. Control, vol. 56, no. 12, pp. 2778–2792, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. K. Oh and H. S. Ahn, “Formation control of mobile agents based on inter–agent distance dynamics,” Automatica, vol. 47, no. 10, pp. 2306–2312, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Zelazo, A. Franchi, H. H. Bulthoff, and P. Robuff, “Decentralized rigidity maintenance control with range measurements for multi–robot systems,” Int. J. Robot. Res., 0278.64914546173, 2014.Google Scholar
  29. [29]
    G. Wen, Z. Peng, and Y. Yu, “Planning and control of three–dimensional multi–agent formations,” IMA Journal of Mathematical Control and Information, vol. 30, no. 2, pp. 265–284, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. K. Oh and H. S. Ahn, “Leader–follower type distancebased formation control of a group of autonomous agents,” Int. J. Control, Automat. Syst., vol. 15, no. 4, pp. 1738–1745, 2017.CrossRefGoogle Scholar
  31. [31]
    A. Franchi, C. Masone, V. Grabe, M. Ryll, H. Bulthoff, and P. Giordano, “Modeling and control of UAV bearingformations with bilateral high–level steering,” Int. J. Robot. Res., 0278.64912462493, 2012.Google Scholar
  32. [32]
    S. Zhao, F. Lin, K. Peng, B. M. Chen, and T. H. Lee, “Distributed control of angle–constrained cyclic formations using bearing–only measurements,” Syst. Control Lett., vol. 63, pp. 12–24, Feb. 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing–only formation stabilization,” IEEE Trans. Autom. Control, vol. 61, no.5, pp. 1255.1268, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum, and J. Parrish, “Oscillator models and collective motion,” IEEE Contr. Syst. Mag., vol. 27, no. 4, pp. 89–105, 2007.CrossRefGoogle Scholar
  35. [35]
    N. E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and R. E. Davis, “Collective motion, sensor networks, and ocean sampling,” Proc. IEEE, vol. 95, no. 1, pp. 48–74, 2007.CrossRefGoogle Scholar
  36. [36]
    R.W. Beard, D. Kingston, D. Johanson, T.W. McLain, and D. B. Nelson, “Decentralized cooperative aerial surveillance using fixed–wing miniature UAVs,” Proc. IEEE, vol. 94, no. 7, pp. 1306–1324, 2006.CrossRefGoogle Scholar
  37. [37]
    M. Dunbabin and L. Marques, “Robots for environmental monitoring: significant advancements and applications,” IEEE Robot Autom. Mag., vol. 19, no. 1, pp. 24–39, 2012.CrossRefGoogle Scholar
  38. [38]
    J. Marshall, M. E. Broucke, and B. Francis, “Formations of vehicles in cyclic pursuit,” IEEE Trans. Autom. Control, vol. 49, no. 11, pp. 1963–1974, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J. Marshall, M. E. Broucke, and B. Francis, “Pursuit formations of unicycles,” Automatica, vol. 42, no. 1, pp. 3–12, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    W. Ding, G. Yan, and Z. Lin, “Collective motions and formations under pursuit strategies on directed acyclic graphs,” Automatica, vol. 46, no. 1, pp. 174–181, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    W. Ren, “Collective motion from consensus with cartesian coordinate coupling,” IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1330–1335, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, “Vision–based, distributed control laws for motion coordination of nonholonomic robots,” IEEE Trans. Robot., vol. 25, no. 4, pp. 851–860, 2009.CrossRefGoogle Scholar
  43. [43]
    Z. Chen and H. T. Zhang, “No–beacon collective circular motion of jointly connected multi–agents,” Automatica, vol. 47, no. 9, pp. 1929–1937, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Z. Chen and H. T. Zhang, “A remark on collective circular motion of heterogeneous multi–agents,” Automatica, vol. 49, no. 5, pp. 1236–1241, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    I. Shames, S. Dasgupta, B. Fidan, and B. Anderson, “Circumnavigation using distance measurements under slow drift,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 889–903, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Deghat, I. Shames, B. D. Anderson, and C. Yu, “Localization and circumnavigation of a slowly moving target using bearing measurements,” IEEE Trans. Autom. Control, vol. 59, no. 8, pp. 2182–2188, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar collective motion: all–to–all communication,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 811–824, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar collective motion with limited communication,” IEEE Trans. Autom. Control, vol. 53, no. 3, pp. 706–719, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    G. S. Seyboth, J. Wu, and J. Qin, “Collective circular motion of unicycle type vehicles with non–identical constant velocities,” IEEE Trans. Contr. Netw. Syst., vol. 1, no. 2, pp. 167–176, 2014.CrossRefzbMATHGoogle Scholar
  50. [50]
    N. Ceccarelli, M. Di Marco, A. Garulli, and A. Giannitrapani, “Collective circular motion of multi–vehicle systems,” Automatica, vol. 44, no. 12, pp. 3025–3035, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Hernandez and D. Paley, “Three–dimensional motion coordination in a spatiotemporal flow field,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2805–2810, 2010.CrossRefzbMATHGoogle Scholar
  52. [52]
    L. Scardovi, N. Leonard, and R. Sepulchre, “Stabilization of three–dimensional collective motion,” Commun. Inf. Syst., vol. 8, no. 4, pp. 473–500, 2008.MathSciNetzbMATHGoogle Scholar
  53. [53]
    D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov vector fields for autonomous unmanned aircraft flight control,” J. Guid. Control Dynam., vol. 31, no. 5, pp. 1220–1229, 2008.CrossRefGoogle Scholar
  54. [54]
    E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields,” J. Guid. Control Dynam., vol. 31, no. 2, pp. 290–306, 2008.CrossRefGoogle Scholar
  55. [55]
    S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 4, pp. 2440–2462, 2013.CrossRefGoogle Scholar
  56. [56]
    V. M. Goncalves, L. C. Pimenta, C. Maia, B. C. Dutra, and G. A. Pereira, “Vector fields for robot navigation along time–varying curves in n–dimensions,” IEEE Trans. Robot., vol. 26, no. 4, pp. 647–659, 2010.CrossRefGoogle Scholar
  57. [57]
    T. H. Kim and T. Sugie, “Cooperative control for targetcapturing task based on a cyclic pursuit strategy,” Automatica, vol. 43, no. 8, pp. 1426–1431, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    J. L. Ramirez–Riberos, M. Pavone, E. Frazzoli, and D. W. Miller, “Distributed control of spacecraft formations via cyclic pursuit: theory and experiments,” J. Guid. Control Dynam., vol. 33, no. 5, pp. 1655–1669, 2010.CrossRefGoogle Scholar
  59. [59]
    A. Franchi, P. Stegagno, and G. Oriolo, “Decentralized multi–robot encirclement of a 3D target with guaranteed collision avoidance,” Auton. Robot., vol. 40, no. 2, pp. 245–265, 2016.CrossRefGoogle Scholar
  60. [60]
    Z. Miao, D. Thakur, R. S. Erwin, J. Pierre, Y. Wang, and R. Fierro, “Orthogonal vector field–based control for a multi–robot system circumnavigating amoving target in 3D,” Proc. of IEEE Conf. Decision Control, pp. 6004.6009, 2015.Google Scholar
  61. [61]
    H. Lutkepohl, Handbook of Matrices, John Wiley and Sons, New York, 1997.zbMATHGoogle Scholar
  62. [62]
    J. Stewart, Multivariable Calculus, Cengage Learning, Belmont, CA, 2011.Google Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hang Zhong
    • 1
  • Yaonan Wang
    • 1
  • Zhiqiang Miao
    • 1
    Email author
  • Jianhao Tan
    • 1
  • Ling Li
    • 2
  • Hui Zhang
    • 2
  • Rafael Fierro
    • 3
  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  2. 2.College of Electrical and Information EngineeringChangsha University of Science and TechnologyChangshaChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations