Robust Output Disturbance, Actuator and Sensor Faults Reconstruction Using H∞ Sliding Mode Descriptor Observer for Uncertain Nonlinear Boiler System

Article
  • 9 Downloads

Abstract

This paper deals with a robust sliding mode descriptor observer for estimation of states and reconstruction of actuator and sensor faults simultaneously in the presence of uncertainties, measurement noise and output disturbances. In the proposed method, the well-known H concepts are used for minimizing the effects of the uncertainty in the estimation of the states and reconstruction of the faults by using the Linear Matrix Inequalities (LMIs). By considering the sensor fault and output disturbance as auxiliary state vectors, an augmented system is established. As a case study, an industrial boiler is considered and the proposed robust observer illustrates the robust performance on estimation of its states and reconstruction of its faults in the presence of uncertainties.

Keywords

Descriptor system fault reconstruction robust sliding mode observer (SMO) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Cai, H. Ferdowsi, and J. Sarangapani, “Model-based fault detection, estimation, and prediction for a class of linear distributed parameter systems,” Automatica, vol. 66, pp. 122–131, 2016.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. Li, J. H. Park, and D. Ye, “Fault detection filter design for switched systems with quantisation effects and packet,” IET Control Theory Appl, vol. 11, no. 2, pp. 182–193, 2017. [click]MathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Keliris, M. M. Polycarpou, and T. Parisini, “A robust nonlinear observer-based approach for distributed fault detection of input–output interconnected systems,” Automatica, vol. 53, pp. 408–415, 2015.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    H. Y. Li, Y. B. Gao, P. Shi, and H. K. Lam, “Observerbased fault detection for nonlinear systems with sensor fault and limited communication capacity,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2745–2751, 2016. [click]CrossRefMATHGoogle Scholar
  5. [5]
    F. B. Dhahri, B. Hmida, and A. Sellami, “Sliding mode observer-based fault reconstruction for uncertain linear systems,” American J. Applied Sciences, vol. 8, no. 10, pp. 1032–1040, 2011.CrossRefGoogle Scholar
  6. [6]
    D. Ye, J. H. Park, and Q. Y. Fan, “Adaptive robust actuator fault compensation for linear systems using a novel fault estimation mechanism,” Int. J. Robust Nonlinear Control, vol. 26, no. 8, pp. 1597–1614, 2016. [click]MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    R. Martinez-Guerra and S. Diop, “Diagnosis of nonlinear systems using an unknown-input observer: an algebraic and differential approach,” IET Control Theory Appl, vol. 151, no. 1, pp. 130–135, 2004. [click]CrossRefGoogle Scholar
  8. [8]
    D. Koenig, B. Marx, and S. Varrier, “Filtering and fault estimation of descriptor switched systems,” Automatica, vol. 63, pp. 116–121, 2016.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    F. Bejarano, “Functional unknown input reconstruction of descriptor systems: application to fault detection,” Automatica, vol. 57, p. 2015, 145–151. [click]MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    K. Kalsi, J. Lian, S. Hui, and S. H. Zak, “Sliding-mode observers for systems with unknown inputs: a high-gain approach,” Automatica, vol. 46, no. 2, pp. 347–353, 2010.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. M. Tabatabaeipour, “Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems,” J. Frankl. Inst, vol. 351, no. 1, pp. 277–295, 2014. [click]MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M. Liu, X. Cao, and P. Shi, “Fuzzy-model-based fault tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 5, pp. 789799, 2013.CrossRefGoogle Scholar
  13. [13]
    K. Zhang, B. Jiang, and P. Shi, “Fast fault estimation and accommodation for dynamical systems,” IET Control Theory Appl, vol. 3, no. 2, pp. 189–199, 2009. [click]MathSciNetCrossRefGoogle Scholar
  14. [14]
    J. W. Zhu, G. H. Yang, H. Wang, and F. L. Wang, “Fault estimation for a class of nonlinear systems based on intermediate estimator,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2518–2524, 2016.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Liu, L. Zhang, P. Shi, and H. R. Karimi, “Robust control of stochastic systems against bounded disturbances with application to flight control,” IEEE Transactions on Industrial Electronics, pp. 1504–1516, 2014.Google Scholar
  16. [16]
    M. &. S. P. Liu, “Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach,” Automatica, vol. 49, no. 5, pp. 1242–1250, 2013. [click]MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    H. Alwi, C. Edwards, and C. P. Tan, Fault Detection and Fault Tolerant Control Using Sliding Modes, Springer, London, 2011.CrossRefMATHGoogle Scholar
  18. [18]
    K. C. Veluvolu and Y. C. Soh, “Fault reconstruction and state estimation with sliding mode observers for Lipschitz non-linear systems,” IET Control Theory & Applications, vol. 5, no. 11, pp. 12551263, 2011. [click]MathSciNetCrossRefGoogle Scholar
  19. [19]
    C. E. a. S. K. Spurgeon, “On the development of discontinuous observers,” International Journal of Control, vol. 59, pp. 1211–1229, 1994. [click]MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    J. Yang, F. Zhu, X. Wang, and X. Bu, “Robust sliding-mode observer-based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systems,” International Journal of Control, Automation, and Systems, vol. 13, no. 5, pp. 1–10, 2015CrossRefGoogle Scholar
  21. [21]
    M. S. P. & C.-A. D. Basin, “Central suboptimal H∞ filter design for nonlinear polynomial systems,” International Journal of Adaptive Control and Signal Processing, vol. 23, no. 10, pp. 926–939, 2009.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Z. Wang, M. Rodrigues, D. Theilliol, and Y. Shen, “Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems,” International Journal of Adaptive Control and Signal Processing, pp. 1–26, 2013.Google Scholar
  23. [23]
    M. Liu and P. Shi, “Sensor fault estimation and tolerant control for Ito stochastic systems with a descriptor sliding mode approach,” Automatica, vol. 49, no. 5, pp. 1242–1250, 2013.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M. Chadi and T. M. Guerra, “LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1160–1165, 2012.CrossRefGoogle Scholar
  25. [25]
    Y. Wei, J. Qui, P. Shi, and M. Chadli, “Fixed-order piecewise-affine output feedback controller for fuzzyaffine-model-based nonlinear systems with time-varying delay,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 64, no. 4, pp. 945–958, 2017. [click]CrossRefGoogle Scholar
  26. [26]
    Y. Wei, J. Qin, H. K. Lam, and L. Wu, “Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear Itô stochastic systems,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 3, pp. 569–583, 2017. [click]CrossRefGoogle Scholar
  27. [27]
    Y. Wei, J. Qui, and H. R. Karimi, “Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 64, no. 1, pp. 170–181, 2017. [click]CrossRefGoogle Scholar
  28. [28]
    Y. Wei, J. Qiu, and H. K. Lam, “A novel approach to reliable output feedback control of fuzzy-affine systems with time-delays and sensor faults,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 1808–1823, 2017.CrossRefGoogle Scholar
  29. [29]
    S. Aouaouda, M. Chadli, and M. Boukhnifer, “Speed sensor fault tolerant controller design for induction motor drive in EV,” Neurocomputing, vol. 214, pp. 32–43, 2016. [click]CrossRefGoogle Scholar
  30. [30]
    S. Aouaouda, M. Chadli, M. Boukhnifer, and H. R. Karimi, “Robust fault tolerant tracking controller design for vehicle dynamics: a descriptor approach,” Mechatronics, vol. 30, pp. 316–326, 2015.CrossRefGoogle Scholar
  31. [31]
    H. Karimi, M. Chadli, and P. Shi, “Fault detection, isolation, andtolerant control of vehicles using soft computing methods,” IET Control Theory & Applications, vol. 8, no. 9, pp. 655–657, 2014.MathSciNetCrossRefGoogle Scholar
  32. [32]
    D. J. Lee, Y. Park, and Y. S. Park, “Robust H sliding mode descriptor observer for fault and output disturbance estimation of uncertain systems,” IEEE Transactions on Automatic Control, vol. 57, no. 11, pp. 2928–2934, 2012.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    M. Liu, L. Zhang, P. Shi, and H. R. Karimi, “State feedback control against sensor faults for Lipschitz nonlinear systems via new sliding mode observer techniques,” Proc. of the 29th Chinese Control Conference, Beijing, China, 2010.Google Scholar
  34. [34]
    Z. Gao and S. X. Ding, “Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach,” IET Control Theory, vol. 1, no. 3, pp. 578–585, 2007. [click]CrossRefGoogle Scholar
  35. [35]
    S. M. Toroghi, M. R. Gharib, A. B. Ramezani, and K. Rahmdel, “Modeling and robust controller design for an industrial boiler,” Energy Procedia, vol. 14, pp. 1471–1477, 2012.CrossRefGoogle Scholar
  36. [36]
    K. Mrunalini, P. Kundu, and K. K. Dutta, “State space model for drum boiler system,” IE (I) Journal-EL, pp. 260–266, 2006.Google Scholar
  37. [37]
    A. K. Astrom and B. R. Bell, “Drum Boiler Dynamics,” Automatica, vol. 36, no. 3, pp. 363–378, 2000. [click]MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    C. P. Tan and C. Edwards, “An LMI approach for designing sliding mode observer,” Int.J. Control, vol. 59, pp. 1559–1568, 2001.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical engineeringShahid Beheshti UniversityTehranIran

Personalised recommendations