Advertisement

Estimation of CD4+ T Cell Count Parameters in HIV/AIDS Patients Based on Real-time Nonlinear Receding Horizon Control

Article

Abstract

An increasing number of control techniques are introduced to HIV infection problem to explore the options of helping clinical testing, optimizing drug treatments and to study the drug resistance. In such cases, complete/accurate knowledge of the HIV model and/or parameters is critical not only to monitor the dynamics of the system, but also to adjust the therapy accordingly. In those studies, existence of any type of unknown parameters imposes severe set-backs and becomes problematic for the treatment of the patients. In this work, we develop a real-time nonlinear receding horizon control approach to aid such scenarios and to estimate unknown constant/time-varying parameters of nonlinear HIV system models. For this purpose, the estimation procedure is reduced to a series of finite-time optimization problem which can be solved by backwards sweep Riccati method in real time without employing any iterative techniques. The simulation results demonstrate that proposed algorithm is able to estimate, effectively, unknown constant/time-varying parameters of HIV/AIDS model with disturbance and provide a unique, adaptive solution to an important open problem.

Keywords

Adpative control HIV model nonlinear receding horizon control parameter estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. C. Gallo, S. Z. Salahuddin, M. Popovic, G. M. Shearer, M. Kaplan, B. F. Haynes, T. J. Palker, R. Redfield, J. Oleske, and B. Safai, “Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS,” Science, vol. 224, no. 4648, pp. 500–503, 1984. [click]CrossRefGoogle Scholar
  2. [2]
    M. Popovic, M. G. Sarngadharan, E. Read, and R. C. Gallo, “Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS,” Science, vol. 224, no. 4648, pp. 497–500, 1984. [click]CrossRefGoogle Scholar
  3. [3]
    M. G. Sarngadharan, M. Popovic, L. Bruch, J. Schupbach, and R. C. Gallo, “Antibodies reactive with human T-lymphotropic retroviruses (HTLV-III) in the serum of patients with AIDS,” Science, vol. 224, no. 4648, pp. 506–508, 1984.CrossRefGoogle Scholar
  4. [4]
    J. Schüpbach, M. Popovic, R. V. Gilden, M. A. Gonda, M. G. Sarngadharan, and R. C. Gallo, “Serological analysis of a subgroup of human T-lymphotropic retroviruses (HTLVIII) associated with AIDS,” Science, vol. 224, no. 4648, pp. 503–505, 1984. [click]CrossRefGoogle Scholar
  5. [5]
    X. Xia, “Estimation of HIV/AIDS parameters,” Automatica, vol. 39, no. 11, pp. 1983–1988, 2003. [click]MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    S. K. Kim, D. Kim, and T.W. Yoon, “Adaptive observer for estimating the parameters of an HIV model with mutants,” Intl. J. Control, Automat. Sys., vol. 13, pp. 126–137, 2015. [click]CrossRefGoogle Scholar
  7. [7]
    A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo,” SIAM review, vol. 41, no. 1, pp. 3–44, 1999. [click]MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho, “HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time,” Science, vol. 271, no. 5255, pp. 1582–1586, 1996. [click]CrossRefGoogle Scholar
  9. [9]
    H. Wu and A. A. Ding, “Population HIV-1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials,” Biometrics, vol. 55, no. 2, pp. 410–418, 1999. [click]CrossRefMATHGoogle Scholar
  10. [10]
    J. M. Lemos and M. S. Barao, “A control Lyapunov function approach to adaptive control of HIV-1 infection,” Archives of Control Sciences, vol. 22, no. 3, pp. 273–284, 2012. [click]MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J. David, H. Tran, and H.T. Banks, “Receding horizon control of HIV,” Optimal Control Applications and Methods, vol. 32, no. 6, pp. 681–699, 2011.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    H. Liang, H. Miao, and H. Wu, “Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model,” The annals of applied statistics, vol. 4, no. 1, pp. 460, 2010.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. Huang, “Adaptive-feedback control algorithm,” Phys. Rev. E, 73, pp. 066204–066211, 2006. [click]MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    L. Li, Y. Yang, H. Peng, and X. Wang, “Parameters identification of chaotic systems via chaotic ant swarm,” Int J Bifurcat Chaos, 16, pp. 1204–1211, 2006.MATHGoogle Scholar
  15. [15]
    W. Yu, G. Chen, J. Cao, Jinhu Lü, and U. Parlitz, “Parameter identification of dynamical systems from time series,” Physical Review E, vol. 75, no. 6, p. 067201, 2007.CrossRefGoogle Scholar
  16. [16]
    Q. He, L. Wang, and B. Liu, “Parameter estimation for chaotic systems by particle swarm optimization,” Chaos Solitons Fractals, 34, pp. 654–661, 2007. [click]CrossRefMATHGoogle Scholar
  17. [17]
    J. Lin and C. Chen, “Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm,” Nonlinear Dyn., 76, pp. 509–517, 2014. [click]MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L. Wua, Y. Gao, L. Liu, and H. Li “Event-triggered sliding mode control of stochastic systems via output feedback,” Automatica, vol. 82, pp. 79–92, 2017.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. Wang, Y. Gao, J. Qiu, and C. Ahn “Sliding mode control for non-linear systems by TakagiSugeno fuzzy model and delta operator approaches,” IET Control Theory & Applications, vol. 11, pp. 1205–1213, 2017. [click]MathSciNetCrossRefGoogle Scholar
  20. [20]
    J. V. Pinheiro and J. M. Lemos, “Multi-drug therapy design for HIV-1 infection using Nonlinear Model Predictive Control,” Proc. of 19th Mediterranean Conference on Control & Automation (MED), pp. 485–490, July 2011.Google Scholar
  21. [21]
    F. R. Casal, A. P. Aguiar, J. M. Lemos, “Multiple-Model Adaptive State Estimation of the HIV-1 Infection using a Moving Horizon Approach,” Proc. of 2013 European Control Conference (ECC), pp. 4202–4207, 2013.CrossRefGoogle Scholar
  22. [22]
    A. Hartmann, S. Vinga, and J. M. Lemos, “Online bayesian time-varying parameter estimation of hiv-1 time-series,” Preprints of the 16th IFAC Symposium on System Identification, 2012.Google Scholar
  23. [23]
    H. Liang, H. Miao, and H. Wu, “Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model,” Ann. Appl. Stat., vol. 4, pp. 460–483, 2010.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Bryson and Y. Ho, Applied Optimal Control, Secs. 2.3 and 6.3, Hemisphere, New York, 1975.Google Scholar
  25. [25]
    P. Kabamba, R. Longman, and S. Jian-Guo, “A homotopy approach to the feedback stablilization of linear systems,” J. Guidance, Control, Dyn., vol. 10, pp. 422–432, 1987. [click]CrossRefMATHGoogle Scholar
  26. [26]
    T. Ohtsuka and H. A. Fujii, “Stabilized continuation method for solving optimal control problems,” J. Guidance, Control, Dyn, vol. 17, pp. 950–957, 1994. [click]CrossRefMATHGoogle Scholar
  27. [27]
    T. Ohtsuka and H. A. Fujii, “Real-Time Optimization Algorithm for Nonlinear Receding-Horizon Control,” Automatica, vol. 33, pp. 1147–1154, 1997. [click]MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    T. Ohtsuka, “Time-variant receding-horizon control of nonlinear systems,” J. Guidance, Control, Dyn, vol. 21, no. 1, pp. 174–176, 1998. [click]MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Jadbabaie and J. Hauser, “On the stability of receding horizon control with a general terminal cost,” IEEE Trans. Autom. Contr., vol. 50, pp. 674–678, 2005. [click]MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Control Science and Dynamic Systems (CSDy) Laboratory, Aerospace Engineering DepartmentSan Jose State UniversityWashington D.C.USA

Personalised recommendations