Skip to main content
Log in

Soft robot review

  • Special Issue: Soft Robotics
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

Soft robots are often inspired from biological systems which consist of soft materials or are actuated by electrically activated materials. There are several advantages of soft robots compared to the conventional robots; safe human-machine interaction, adaptability to wearable devices, simple gripping system, and so on. Due to the unique features and advantages, soft robots have a considerable range of applications. This article reviews state-of-the-art researches on soft robots and application areas. Actuation systems for soft robots can be categorized and analyzed into three types: variable length tendon, fluidic actuation, and electro-active polymer (EAP). The deformable property of soft robots restricts the use of many conventional rigid sensors such as encoders, strain gauges, or inertial measurement units. Thus, contactless approaches for sensing and/or sensors with low modulus are preferable for soft robots. Sensors include low modulus (< 1 MPa) elastomers with liquid-phase material filled channels and are appropriate for proprioception which is determined by the degree of curvature. In control perspective, novel control idea should be developed because the conventional control techniques may be inadequate to handle soft robots. Several innovative techniques and diverse materials & fabrication methods are described in this review article. In addition, a wide range of soft robots are characterized and analyzed based on the following sub-categories; actuation, sensing, structure, control and electronics, materials, fabrication and system, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hülse, S. Wischmann, and F. Pasemann, The Role of Non-linearity for Evolved Multifunctional Robot Behavior, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

    Book  Google Scholar 

  2. D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, pp. 467–475, 2015. [click]

    Article  Google Scholar 

  3. Untethered soft robot. https://www.youtube.com/watch?v=_OJrwCP24cI

  4. Soft Robot Walking and Crawling. https://www.youtube.com/watch?v=2DsbS9cMOAE

  5. Soft Robot Uses Explosions to Jump. https://www. youtube.com/watch?v=dkUtNPwm2wc

  6. iRobot’s Soft Morphing Blob’ Bot Takes Its First Steps. https://www.youtube.com/watch?v=SbqHERKdlK8

  7. Field experiments with the OctArm continuum manipulator. https://www.youtube.com/watch?v=6fhpt6MWDDE

  8. A novel type of compliant, underactuated robotic hand for dexterous grasping. https://www.youtube.com/watch? v=Tbg-vo5Tx34

  9. Soft Robotics 03: Manta Robot. https://www.youtube.com/ watch?v=mTjhXKIXc90

  10. Autonomous, self-contained soft robotic fish at MIT. https://www.youtube.com/watch?v=BSA_zb1ajes

  11. Soft Robotic Glove. https://www.youtube.com/watch?v=Ef6Ebc8RtLQ

  12. Octopus-Inspired Robots Can Grasp, Crawl, and Swim. https://www.youtube.com/watch?v=L7FEJJsvHRQ

  13. Soft autonomous earthworm robot at MIT. https://www.youtube.com/watch?v=EXkf62qGFII

  14. GoQBot. https://www.youtube.com/watch?v=a-1AiExU3Vk

  15. Universal robotic gripper based on the jamming of granular material.https://www.youtube.com/watch?v= bFW7VQpY-Ik

  16. MIT’s Jammable Robot Manipulator. https://www.youtube.com/watch?v=0DNJwM8lyBo

  17. Y. Bahramzadeh and M. Shahinpoor, “A review of ionic polymeric soft actuators and sensors,” Soft Robotics, vol. 1, pp. 38–52, 2014. [click]

    Article  Google Scholar 

  18. M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario, “An octopus-bioinspired solution to movement and manipulation for soft robots,” Bioinspiration & Biomimetics, vol. 6, p 036002, 2011. [click]

    Article  Google Scholar 

  19. N. G. Cheng, M. B. Lobovsky, S. J. Keating, A. M. Setapen, K. I. Gero, A. E. Hosoi, and K. D. Iagnemma, “Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media,” 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4328–4333, 2012.

    Chapter  Google Scholar 

  20. S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, and S. Kim, “Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Transactions on Mechatronics, vol. 18, pp. 1485–1497, 2013.

    Article  Google Scholar 

  21. H. T. Lin, G. G. Leisk, and B. Trimmer, “GoQBot: a caterpillar-inspired soft-bodied rolling robot,” Bioinspir Biomim, vol. 6, p 026007, 2011. [click]

    Article  Google Scholar 

  22. C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, “Soft robot arm inspired by the octopus,” Advanced Robotics, vol. 26, pp. 709–727, 2012. [click]

    Article  Google Scholar 

  23. H. Schulte Jr, “The characteristics of the McKibben artificial muscle,” The Application of External Power in Prosthetics and Orthotics (Washington, DC: Nat. Acad. Sci.-Nat. Res. Council), vol., 1961.

    Google Scholar 

  24. C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, pp. 90–102, 1996.

    Article  Google Scholar 

  25. M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, and G. M. Whitesides, “A Resilient, Untethered Soft Robot,” Soft Robotics, vol. 1, pp. 213–223, 2014.

    Article  Google Scholar 

  26. R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft robot,” Proc Natl Acad Sci U S A, vol. 108, pp. 20400–20403, 2011. [click]

    Article  Google Scholar 

  27. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides, “Pneumatic networks for soft robotics that actuate rapidly,” Advanced Functional Materials, vol. 24, pp. 2163–2170, 2014. [click]

    Article  Google Scholar 

  28. S. A. Morin, R. F. Shepherd, S.W. Kwok, A. A. Stokes, A. Nemiroski, and G. M. Whitesides, “Camouflage and display for soft machines,” Science, vol. 337, pp. 828–832, 2012. [click]

    Article  Google Scholar 

  29. D. O. Cagdas and R. Daniela, “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspiration & Biomimetics, vol. 8, p 026003, 2013. [click]

    Article  Google Scholar 

  30. E. Steltz, A. Mozeika, N. Rodenberg, E. Brown, and H. M. Jaeger, “JSEL: Jamming skin enabled locomotion,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5672–5677, 2009.

    Google Scholar 

  31. C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, “Soft mobile robots with on-board chemical pressure generation,” Proc. of International Symposium on Robotics Research, pp. 1–16, 2011.

    Google Scholar 

  32. M. T. Tolley, R. F. Shepherd, M. Karpelson, N.W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood, “An untethered jumping soft robot,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 561–566, 2014.

    Google Scholar 

  33. K. Suzumori, S. Iikura, and H. Tanaka, “Applying a flexible microactuator to robotic mechanisms,” Control Systems, IEEE, vol. 12, pp. 21–27, 1992.

    Article  Google Scholar 

  34. W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, B. A. Jones, M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn, “Field trials and testing of the OctArm continuum manipulator,” Proc. of IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp. 2336–2341, 2006.

    Chapter  Google Scholar 

  35. F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft robotics for chemists,” Angew Chem Int Ed Engl, vol. 50, pp. 1890–1895, 2011. [click]

    Article  Google Scholar 

  36. R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic hand for dexterous grasping,” The International Journal of Robotics Research, vol., 2015.

    Google Scholar 

  37. S. Sanan, P. S. Lynn, and S. T. Griffith, “Pneumatic torsional actuators for inflatable robots,” Journal of Mechanisms and Robotics, vol. 6, pp. 031003–031003, 2014.

    Article  Google Scholar 

  38. A. A. Stokes, R. F. Shepherd, S. A. Morin, F. Ilievski, and G. M. Whitesides, “A hybrid combining hard and soft robots,” Soft Robotics, vol. 1, pp. 70–74, 2014. [click]

    Article  Google Scholar 

  39. K. Suzumori, S. Endo, T. Kanda, N. Kato, and H. Suzuki, “A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot,” Proc. of IEEE International Conference on Robotics and Automation, pp. 4975–4980, 2007.

    Google Scholar 

  40. R. K. Katzschmann, A. D. Marchese, and D. Rus, “Hydraulic autonomous soft robotic fish for 3D swimming,” Experimental Robotics, pp. 405–420, 2016. [click]

    Chapter  Google Scholar 

  41. P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Robotics and Autonomous Systems, vol. 73, pp. 135–143, 2015. [click]

    Article  Google Scholar 

  42. K. J. Kim and S. Tadokoro, “Electroactive polymers for robotic applications,” Artificial Muscles and Sensors (291 p.), Springer: London, United Kingdom, vol., 2007.

    Chapter  Google Scholar 

  43. E. N. Gama Melo, O. F. Aviles Sanchez, and D. Amaya Hurtado, “Anthropomorphic robotic hands: a review,” Ingeniería y Desarrollo, vol. 32, pp. 279–313, 2014.

    Article  Google Scholar 

  44. Y. Bar-Cohen, “EAP as artificial muscles: progress and challenges,” Smart Structures and Materials, pp. 10–16, 2004. [click]

    Google Scholar 

  45. Y. Nakabo, T. Mukai, K. Ogawa, N. Ohnishi, and K. Asaka, “Biomimetic soft robot using artificial muscle,” Proc. of IEEE/RSJ Int. Conf. Intelligent Robots and Systems, in tutorial, WTP3 Electro-Active Polymer for Use in Robotics, 2004.

    Google Scholar 

  46. K. Ogawa, Y. Nakabo, T. Mukai, K. Asaka, and N. Ohnishi, “A snake-like swimming artificial muscle,” Proc. of The 2nd Conf. on Artificial Muscles, Osaka, 2004.

    Google Scholar 

  47. Y. Nakabo, T. Mukai, and K. Asaka, “A multi-DOF robot manipulator with a patterned artificial muscle,” Proc. of The 2nd Conf. on Artificial Muscle, Osaka, 2004.

    Google Scholar 

  48. Y. Nakabo, T. Mukai, and K. Asaka, “Kinematic modeling and visual sensing of multi-DOF robot manipulator with patterned artificial muscle,” Proc. of IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 4315–4320, 2005.

    Chapter  Google Scholar 

  49. S. Guo, T. Fukuda, and K. Asaka, “A new type of fishlike underwater microrobot,” IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 136–141, 2003.

    Article  Google Scholar 

  50. M. Mojarrad and M. Shahinpoor, “Biomimetic robotic propulsion using polymeric artificial muscles,” Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, pp. 2152–2157, 1997.

    Google Scholar 

  51. D. M. Vogt, Y.-L. Park, and R. J. Wood, “Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels,” IEEE Sensors Journal, vol. 13, pp. 4056–4064, 2013.

    Article  Google Scholar 

  52. C. Majidi, R. Kramer, and R. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Materials and Structures, vol. 20, p 105017, 2011. [click]

    Article  Google Scholar 

  53. R. K. Kramer, C. Majidi, R. Sahai, and R. J. Wood, “Soft curvature sensors for joint angle proprioception,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1919–1926, 2011.

    Google Scholar 

  54. R. D. P. Wong, J. D. Posner, and V. J. Santos, “Flexible microfluidic normal force sensor skin for tactile feedback,” Sensors and Actuators A: Physical, vol. 179, pp. 62–69, 2012. [click]

    Article  Google Scholar 

  55. J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Advanced Materials, vol. 26, pp. 6307–6312, 2014. [click]

    Article  Google Scholar 

  56. R. K. Kramer, C. Majidi, and R. J. Wood, “Masked deposition of Gallium-Indium alloys for liquid-embedded elastomer conductors,” Advanced Functional Materials, vol. 23, pp. 5292–5296, 2013. [click]

    Article  Google Scholar 

  57. W. Felt and C. D. Remy, “Smart braid: air muscles that measure force and displacement,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2821–2826, 2014.

    Google Scholar 

  58. W. Felt, K. Y. Chin, and C. D. Remy, “Contraction sensing with smart braid McKibben muscles,” IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 1201–1209, 2016.

    Article  Google Scholar 

  59. M. Shahinpoor, Y. Bar-Cohen, J. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review,” Smart Materials and Structures, vol. 7, p R15, 1998. [click]

    Article  Google Scholar 

  60. M. Mojarrad and M. Shahinpoor, “Ion-exchange-metal composite sensor films,” Smart Structures and Materials’ 97, pp. 52–60, 1997.

    Google Scholar 

  61. Y.-L. Zheng, X.-R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X.-L. Zhou, G.-Z. Yang, N. Zhao, and Y.-T. Zhang, “Unobtrusive sensing and wearable devices for health informatics,” IEEE Transactions on Biomedical Engineering, vol. 61, pp. 1538–1554, 2014.

    Article  Google Scholar 

  62. K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J. Wood, and D. F. Gruber, “Soft robotic grippers for biological sampling on deep reefs,” Soft Robotics, vol. 3, pp. 23–33, 2016. [click]

    Article  Google Scholar 

  63. E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” Proceedings of the National Academy of Sciences, vol. 107, pp. 18809–18814, 2010. [click]

    Article  Google Scholar 

  64. J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive pressure universal gripper based on the hamming of granular material,” IEEE Transactions on Robotics, vol. 28, pp. 341–350, 2012.

    Article  Google Scholar 

  65. J. L. Tangorra, A. P. Mignano, G. N. Carryon, and J. C. Kahn, “Biologically derived models of the sunfish for experimental investigations of multi-fin swimming,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 580–587, 2011.

    Chapter  Google Scholar 

  66. A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators,” Soft Robotics, vol. 1, pp. 75–87, 2014. [click]

    Article  Google Scholar 

  67. R. Stopforth and G. Bright, “MechaBird: a biological inspired mechatronics bird for the evaluation of flight characteristics,” Proc. of IEEE International Conference on Automation Science and Engineering (CASE), pp. 335–341, 2015.

    Google Scholar 

  68. D. G. Caldwell, G. A. Medranocerda, and M. Goodwin, “Control of pneumatic muscle actuators,” IEEE Control Systems Magazine, vol. 15, pp. 40–48, 1995.

    Article  Google Scholar 

  69. D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow,” Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pp. 3558–3563, 1994.

    Chapter  Google Scholar 

  70. M. T. Gillespie, C. M. Best, and M. D. Killpack, “Simultaneous position and stiffness control for an inflatable soft robot,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1095–1101, 2016.

    Google Scholar 

  71. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science, vol. 327, pp. 1603–1607, 2010. [click]

    Article  Google Scholar 

  72. K. H. Low, J. Yang, A. P. Pattathil, and Y. Zhang, “Initial prototype design and iInvestigation of an undulating body by SMA,” Proc. of IEEE International Conference on Automation Science and Engineering, pp. 472–477, 2006.

    Google Scholar 

  73. Z. Chen, T. I. Um, J. Zhu, and H. Bart-Smith, “Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin,” ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 817–824, 2011.

    Google Scholar 

  74. A. A. Stokes, R. F. Shepherd, S. A. Morin, F. Ilievski, and G. M. Whitesides, “A hybrid combining hard and soft robots,” Soft Robotics, vol. 1, pp. 70–74, 2013. [click]

    Article  Google Scholar 

  75. M. Cianchetti, T. Ranzani, G. Gerboni, I. D. Falco, C. Laschi, and A. Menciassi, “STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3576–3581, 2013.

    Chapter  Google Scholar 

  76. R. Merz, F. B. Prinz, K. Ramaswami, M. Terk, and L. Weiss, “Shape deposition manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, 1994.

    Google Scholar 

  77. Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber bragg grating sensors and shape deposition manufacturing,” Proc. of IEEE International Conference on Robotics and Automation, pp. 1510–1516, 2007.

    Google Scholar 

  78. S. Kim, J. E. Clark, and M. R. Cutkosky, “iSprawl: design and tuning for high-speed autonomous open-loop running,” The International Journal of Robotics Research, vol. 25, pp. 903–912, 2006. [click]

    Article  Google Scholar 

  79. D. Santos, B. Heyneman, S. Kim, N. Esparza, and M. R. Cutkosky, “Gecko-inspired climbing behaviors on vertical and overhanging surfaces,” Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 1125–1131, 2008.

    Google Scholar 

  80. J. G. Cham, S. A. Bailey, J. E. Clark, R. J. Full, and M. R. Cutkosky, “Fast and robust: hexapedal robots via shape deposition manufacturing,” The International Journal of Robotics Research, vol. 21, pp. 869–882, 2002.

    Article  Google Scholar 

  81. K. Hosoda, Y. Tada, and M. Asada, “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and Autonomous Systems, vol. 54, pp. 104–109, 2006. [click]

    Article  Google Scholar 

  82. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J. Wood, “Programmable matter by folding,” Proceedings of the National Academy of Sciences, vol. 107, pp. 12441–12445, 2010. [click]

    Article  Google Scholar 

  83. O. P.-A. Néstor, Y. M. Kevin, C. G. Kevin, D. G. Jack, and J. W. Robert, “First controlled vertical flight of a biologically inspired microrobot,” Bioinspiration & Biomimetics, vol. 6, p 036009, 2011. [click]

    Article  Google Scholar 

  84. K. Peterson, P. Birkmeyer, R. Dudley, and R. S. Fearing, “A wing-assisted running robot and implications for avian flight evolution,” Bioinspiration & Biomimetics, vol. 6, p 046008, 2011. [click]

    Google Scholar 

  85. T. Umedachi, V. Vikas, and B. A. Trimmer, “Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4590–4595, 2013.

    Google Scholar 

  86. M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feedforward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5033–5039, 2013.

    Google Scholar 

  87. S. Frank, A. T. Barry, and R. Jason, “Modeling locomotion of a soft-bodied arthropod using inverse dynamics,” Bioinspiration & Biomimetics, vol. 6, p 016001, 2011. [click]

    Article  Google Scholar 

  88. A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and control of a soft and continuously deformable 2D robotic manipulation system,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2189–2196, 2014.

    Google Scholar 

  89. A. D. Marchese and D. Rus, “Design, kinematics, and control of a soft spatial fluidic elastomer manipulator,” The International Journal of Robotics Research, 2015.

    Google Scholar 

  90. F. J. Chen, S. Dirven, W. L. Xu, and X. N. Li, “Soft Actuator Mimicking Human Esophageal Peristalsis for a swallowing robot,” IEEE/ASME Transactions on Mechatronics, vol. 19, pp. 1300–1308, 2014.

    Article  Google Scholar 

  91. F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, “A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm,” Bioinspiration & Biomimetics, vol. 7, p 025006, 2012. [click]

    Article  Google Scholar 

  92. M. Cianchetti, M. Follador, B. Mazzolai, P. Dario, and C. Laschi, “Design and development of a soft robotic octopus arm exploiting embodied intelligence,” Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 5271–5276, 2012.

    Chapter  Google Scholar 

  93. C. Laschi and M. Cianchetti, “Soft robotics: new perspectives for robot bodyware and control,” Frontiers in Bioengineering and Biotechnology, vol. 2, 2014.

    Google Scholar 

  94. A. Goh, “Back-propagation neural networks for modeling complex systems,” Artificial Intelligence in Engineering, vol. 9, pp. 143–151, 1995. [click]

    Article  Google Scholar 

  95. M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed forward neural network for solving the inverse kinetics of non-constant curvature soft manipulators driven by cables,” Proc. of ASME Dynamic Systems and Control Conference, pp. 823–834, 2013.

    Google Scholar 

  96. M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, “Neural network and Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature,” IEEE Transactions on Robotics, vol. 31, pp. 823–834, 2015.

    Article  Google Scholar 

  97. J. Rieffel, F. Saunders, S. Nadimpalli, H. Zhou, S. Hassoun, J. Rife, and B. Trimmer, Evolving Soft Robotic Locomotion in PhysX, ACM, Montreal, pp. 2499–2504, Canada, 2009.

    Google Scholar 

  98. C. Majidi, “Soft robotics: a perspective-current trends and prospects for the future,” Soft Robotics, vol. 1, pp. 5–11, 2014. [click]

    Article  Google Scholar 

  99. N. Correll, Ç. D. Önal, H. Liang, E. Schoenfeld, and D. Rus, Soft Autonomous Materials-Using Active Elasticity and Embedded Distributed Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

    Book  Google Scholar 

  100. W. Wei, L. Jang-Yeob, R. Hugo, S. Sung-Hyuk, C. Won-Shik, and A. Sung-Hoon, “Locomotion of inchworminspired robot made of smart soft composite (SSC),” Bioinspiration & Biomimetics, vol. 9, p 046006, 2014. [click]

    Article  Google Scholar 

  101. M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi, “Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot,” Bioinspiration & Biomimetics, vol. 10, p 035003, 2015. [click]

    Article  Google Scholar 

  102. M. Calisti, A. Arienti, F. Renda, G. Levy, B. Hochner, B. Mazzolai, P. Dario, and C. Laschi, “Design and development of a soft robot with crawling and grasping capabilities,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 4950–4955, 2012.

    Google Scholar 

  103. F. Renda, F. Giorgio-Serchi, F. Boyer, and C. Laschi, “Locomotion and elastodynamics model of an underwater shell-like soft robot,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1158–1165, 2015.

    Google Scholar 

  104. Y. Sugiyama and S. Hirai, “Crawling and jumping by a deformable robot,” The International Journal of Robotics Research, vol. 25, pp. 603–620, 2006. [click]

    Article  Google Scholar 

  105. R. F. Shepherd, A. A. Stokes, J. Freake, J. Barber, P. W. Snyder, A. D. Mazzeo, L. Cademartiri, S. A. Morin, and G. M. Whitesides, “Using explosions to power a soft robot,” Angewandte Chemie International Edition, vol. 52, pp. 2892–2896, 2013. [click]

    Article  Google Scholar 

  106. N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, and R. J. Wood, “A 3D-printed, functionally graded soft robot powered by combustion,” Science, vol. 349, pp. 161–165, 2015. [click]

    Article  Google Scholar 

  107. R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd, R. M. D. Nunes, Z. Suo, and G. M. Whitesides, “Robotic tentacles with three-dimensional mobility based on flexible elastomers,” Advanced Materials, vol. 25, pp. 205–212, 2013. [click]

    Article  Google Scholar 

  108. B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, and C. Laschi, “Soft-robotic arm inspired by the octopus: II. from artificial requirements to innovative technological solutions,” Bioinspiration & Biomimetics, vol. 7, p 025005, 2012. [click]

    Article  Google Scholar 

  109. R. K. Katzschmann, A. D. Marchese, and D. Rus, “Autonomous object manipulation using a soft planar grasping manipulator,” Soft Robotics, vol. 2, pp. 155–164, 2015. [click]

    Article  Google Scholar 

  110. C. Lee, W. J. Park, M. Kim, S. Noh, C. Yoon, C. Lee, Y. Kim, H. H. Kim, H. C. Kim, and S. Kim, “Pneumatictype surgical robot end-effector for laparoscopic surgicaloperation-by-wire,” Biomed Eng Online, vol. 13, p 130, 2014.

    Article  Google Scholar 

  111. A. Jiang, E. Secco, H. Wurdemann, T. Nanayakkara, P. Dasgupta, and K. Athoefer, “Stiffness-controllable octopus-like robot arm for minimally invasive surgery,” Workshop on New Technologies for Computer/Robot Assisted Surgery, 2013.

    Google Scholar 

  112. M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A. Menciassi, “Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach,” Soft Robotics, vol. 1, pp. 122–131, 2014. [click]

    Article  Google Scholar 

  113. S. Sareh, A. Jiang, A. Faragasso, Y. Noh, T. Nanayakkara, P. Dasgupta, L. D. Seneviratne, H. A. Wurdemann, and K. Althoefer, “Bio-inspired tactile sensor sleeve for surgical soft manipulators,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1454–1459, 2014.

    Google Scholar 

  114. T. Deng, H. Wang, W. Chen, X. Wang, and R. Pfeifer, “Development of a new cable-driven soft robot for cardiac ablation,” Proc. of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 728–733, 2013.

    Google Scholar 

  115. P. Maeder-York, T. Clites, E. Boggs, R. Neff, P. Polygerinos, D. Holland, L. Stirling, K. Galloway, C. Wee, and C. Walsh, “Biologically inspired soft robot for thumb rehabilitation,” Journal of Medical Devices, vol. 8, p 020933, 2014. [click]

    Article  Google Scholar 

  116. P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O. Donnell, and C. J. Walsh, “Soft robotic glove for hand rehabilitation and task specific training,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2913–2919, 2015.

    Google Scholar 

  117. H. K. Yap, J. C. H. Goh, and R. C. H. Yeow, Design and Characterization of Soft Actuator for Hand Rehabilitation Application, Springer International Publishing, Cham, 2015.

    Book  Google Scholar 

  118. H. K. Yap, L. Jeong Hoon, F. Nasrallah, J. C. H. Goh, and R. C. H. Yeow, “A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 4967–4972, 2015.

    Google Scholar 

  119. Y. S. Song, Y. Sun, R. v. d. Brand, J. v. Zitzewitz, S. Micera, G. Courtine, and J. Paik, “Soft robot for gait rehabilitation of spinalized rodents,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 971–976, 2013.

    Google Scholar 

  120. A. T. Asbeck, R. J. Dyer, A. F. Larusson, and C. J. Walsh, “Biologically-inspired soft exosuit,” Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on, pp. 1–8, 2013.

    Chapter  Google Scholar 

  121. P. Yong-Lae, C. Bor-rong, O. P.-A. Néstor, Y. Diana, S. Leia, J.W. Robert, C. G. Eugene, and N. Radhika, “Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation,” Bioinspiration & Biomimetics, vol. 9, p 016007, 2014. [click]

    Article  Google Scholar 

  122. J. A. Gallego, E. Rocon, J. Ib, x00E, x00F, ez, J. L. Dideriksen, A. D. Koutsou, R. Paradiso, M. B. Popovic, J. M. Belda-Lois, F. Gianfelici, D. Farina, D. B. Popovic, M. Manto, T. D. Alessio, and J. L. Pons, “A soft wearable robot for tremor assessment and suppression,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2249–2254, 2011.

    Google Scholar 

  123. Y. Sun, C. M. Lim, H. H. Tan, and H. Ren, “Soft oral interventional rehabilitation robot based on low-profile soft pneumatic actuator,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2907–2912, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwan Kim.

Additional information

Recommended by Editor-in-Chief Young Hoon Joo. This work was supported by the Bio and Medical Technology Development Program of the NRF funded by the Korean Government, MSIP (NRF-2014M3A9E3064623), the Interdisciplinary Research Initiatives Program from College of Engineering and College of Medicine, Seoul National University (Grant No. 800-20160095), and the Research Program 2016 funded by Seoul National University College of Medicine Research Foundation (Grant No. 800-20160072). Chiwon Lee, Myungjoon Kim, Yoon Jae Kim, and Nhayoung Hong contributed equally to this work (co-first author).

Chiwon Lee received the B.S. degree in Mechanical & Aerospace Engineering and Ph.D. degree in the Interdisciplinary Program for Bioengineering from Seoul National University (SNU), in 2011 and 2015, respectively. He is a senior researcher with the Institute of Medical and Biological Engineering, SNU since Sept. 2015. He is currently conducting researches about medical robot, machine learning, and 3D printing technology for medical applications.

Myungjoon Kim received the B.S. degree in Electronics Engineering from Tsinghua University, Beijing China, in 2012. He is currently pursuing a Ph.D. degree in the Interdisciplinary Program for Bioengineering from Seoul National University, Seoul Korea. His main research area is development of medical robot system.

Yoon Jae Kim received the B.S. degree in Mechanical & Aerospace Engineering from Seoul National University in 2014. He is currently pursuing a Ph.D. degree in the Interdisciplinary Program for Bioengineering from Seoul National University, Seoul Korea. His main research interests include rehabilitation robots and biosignal processing.

Nhayoung Hong received the B.S. degree in Bio-Mechatronics from Sungkyunkwan University in 2016. She is currently pursuing a Ph.D. degree in the Interdisciplinary Program for Bioengineering from Seoul National University. Her research interests include surgical robots and biomedical control.

Seungwan Ryu received the B.S. degree in mechanical engineering from Hanyang University, Seoul, Korea, in 2013, and the M.S degree from Seoul National University, Seoul, Korea, in 2015. He is currently pursuing the Ph.D. degree in the Department of Mechanical and Aerospace Engineering at Seoul National University. His research interests include control of unmanned micro aerial vehicles and biomimetic mobile robots, and application of flapping wing mechanisms.

H. Jin Kim received her B.S. degree from Korean Advanced Institute of Technology in 1995, and M.S. and Ph.D. degrees from the University of California, Berkeley, USA, in 1999 and 2001, respectively, all in mechanical engineering. From 2002 to 2004, she was a postdoctoral researcher in Electrical Engineering and Computer Sciences at University of California, Berkeley. In 2004, she joined the School of Mechanical and Aerospace Engineering at Seoul National University, where she is currently a Professor. Her research interests are intelligent control of robotic systems, motion planning and vision-based navigation.

Sungwan Kim received his B.S. degree in Electronics Engineering and M.S. degree in Control & Instrumentation Engineering from Seoul National University (SNU), Seoul Korea in 1985 and 1987, and his Ph.D. degree in Electrical Engineering from University of California at Los Angeles in 1993, respectively. He is a professor with the Department of Biomedical Engineering, SNU College of Medicine since 2010. Prior to joining to the SNU, he worked as a Senior Aerospace Engineer at National Aeronautics and Space Administration (NASA) Langley Research Center, Hampton, Virginia, USA. He is an Associate Fellow of the AIAA and a Senior Member of the IEEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Kim, M., Kim, Y.J. et al. Soft robot review. Int. J. Control Autom. Syst. 15, 3–15 (2017). https://doi.org/10.1007/s12555-016-0462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-016-0462-3

Keywords

Navigation