Advertisement

Adaptive control of multiple mobile manipulators transporting a rigid object

  • Abdelkrim BrahmiEmail author
  • Maarouf Saad
  • Guy Gauthier
  • Wen-Hong Zhu
  • Jawhar Ghommam
Regular Papers Robot and Applications

Abstract

This paper presents a nonlinear control scheme for multiple mobile manipulator robots (MMR) moving a rigid object in coordination. The dynamic parameters of the handled object and the mobile manipulators are estimated online using the virtual decomposition approach. The control law is designed based on an appropriate choice of the Lyapunov function candidate. The proposed control design ensures that the position error in the workspace converges to zero, and the external force error is bounded. Numerical simulations and an experimental validation are carried out for two mobile manipulators transporting an object in order to show the effectiveness of the proposed controller.

Keywords

Coordination mobile manipulator nonlinear control virtual decomposition approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Khatib, et al., “Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp 546–553, 1996.CrossRefGoogle Scholar
  2. [2]
    J. Park, and O. Khatib, “Robot multiple contact control,” Robotica, vol. 26, no. 5, pp 667–677, 2008. [click]CrossRefGoogle Scholar
  3. [3]
    K. Kosuge, and T. Oosumi, “Decentralized control of multiple robots handling an object,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 318–323, 1996.CrossRefGoogle Scholar
  4. [4]
    Y. Hirata, et al., “Decentralized control of mobile robots in coordination,” Proceedings of the IEEE International Conference on Control Applications, vol 2, pp 1129–1134, 1999.Google Scholar
  5. [5]
    K. Kosuge, et al., “Motion control of multiple autonomous mobile robots handling a large object in coordination,” IEEE International Conference on Robotics and Automation, vol. 4, pp. 2666–2673, 1999. [click]Google Scholar
  6. [6]
    Y. Kume, Y. Hirata, and K. Kosuge, “Coordinated motion control of multiple mobile manipulators handling a single object without using force/torque sensors” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4077–4082 2007. [click]Google Scholar
  7. [7]
    C. Xin, and L. Yangmin, “Cooperative Transportation by Multiple Mobile Manipulators using Adaptive NN Control” International Joint Conference on Neural Networks, pp. 4193–4200 2006. [click]Google Scholar
  8. [8]
    Y. Hirata, et al., “Leader-follower type motion control algorithm of multiple mobile robots with dual manipulators for handling a single object in coordination” Proceedings of the International Conference on Intelligent Mechatronics and Automation, pp. 362–367 2004.Google Scholar
  9. [9]
    T. Chao, et al., “Cooperative control of two mobile manipulators transporting objects on the slope” International Conference on Mechatronics and Automation, pp. 2805–2810 2009.Google Scholar
  10. [10]
    M. Fujii, et al., “Cooperative control of multiple mobile robots transporting a single object with loose handling” IEEE International Conference on Robotics and Biomimetics, pp. 816–822 2007.Google Scholar
  11. [11]
    S. M. LaValle, “Planning algorithms,” New York: Cambridge University Press, 2006.CrossRefzbMATHGoogle Scholar
  12. [12]
    J.-C. Latombe, “Robot motion planning,” Springer Science & Business Media,vol. 124, 2012.Google Scholar
  13. [13]
    J. P. Desai and V. Kumar, “Nonholonomic motion planning for multiple mobile manipulators,” IEEE International Conference on Robotics and Automation, vol. 4, pp. 3409–3414, 1997. [click]CrossRefGoogle Scholar
  14. [14]
    Y. Yamamoto and S. Fukuda, “Trajectory planning of multiple mobile manipulators with collision avoidance capability,” IEEE International Conference on Robotics and Automation, vol. 4, pp. 3565–3570, 2002. [click]Google Scholar
  15. [15]
    S. Furuno, M. Yamamoto, and A. Mohri, “Trajectory planning of cooperative multiple mobile manipulators,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 136–141, 2003.Google Scholar
  16. [16]
    S. Xiaoyan and G. Dunwei, “Multi-robot moving path planning based on coevolutionary algorithm,” Fifth World Congress on Intelligent Control and Automation,, vol. 3, pp. 2231–2235, 2004.CrossRefGoogle Scholar
  17. [17]
    A. Zhu and S. X. Yang, “Path planning of multi-robot systems with cooperation,” IEEE International Symposium on Computational Intelligence in Robotics and Automation, vol. 2, pp. 1028–1033, 2003. [click]Google Scholar
  18. [18]
    G. Chen, “Cooperative controller design for synchronization of networked uncertain EulerLagrange systems,” International Journal of Robust and Nonlinear Control, vol. 25, pp. 1721–1738, 2015. [click]MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    D. Zhao, S. Li and Q. Zhu, “Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics,” International Journal of Systems Science, vol. 47, no. 4, pp. 791–804, 2016. [click]MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    X. Liu, P. Zhang, G. Du, C. Loughlin, and C. Loughlin, “Hybrid adaptive impedance-leader-follower control for multi-arm coordination manipulators,” International Journal of Industrial Robot, vol. 43, no. 1, pp. 112–120, 2016. [click]CrossRefGoogle Scholar
  21. [21]
    X. Liu, J. H. Park, N. Jiang and J. Cao, “Nonsmooth finitetime stabilization of neural networks with discontinuous activations,” Neural Networks, vol. 52, pp. 25–32, 2014. [click]CrossRefzbMATHGoogle Scholar
  22. [22]
    H. Liu and T. Zhang, “Neural network-based robust finitetime control for robotic manipulators considering actuator dynamics,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 2, pp. 301–308, 2013. [click]CrossRefGoogle Scholar
  23. [23]
    X. Liu, N. Jiang, J. Cao, S. Wang and Z. Wang, “Finitetime stochastic stabilization for BAM neural networks with uncertainties,” Journal of the Franklin Institute, vol. 350, no. 8, pp. 2109–2123, 2013. [click]MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    T.-L. Mai and Y. Wang, “Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks,” Control Theory and Technology, vol. 12, no. 4, pp. 368–382, 2014. [click]CrossRefzbMATHGoogle Scholar
  25. [25]
    W.-H. Zhu, et al., “Virtual decomposition based control for generalized high dimensional robotic systems with complicated structure,” IEEE Transactions on Robotics and Automation, vol. 13, no. 3, pp. 411–436, 1997. [click]MathSciNetCrossRefGoogle Scholar
  26. [26]
    H. F. N. Al-Shuka, B. Corves and W.-H. Zhu, “Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator,” Robotica, vol. 32, no. 3, pp. 375–399, 2014. [click]CrossRefGoogle Scholar
  27. [27]
    Z. Li and S. S. Ge, “Fundamentals in Modeling and Control of Mobile Manipulators,” CRC Press, vol. 49, 2013.Google Scholar
  28. [28]
    J. H. Jean and L. C. Fu, “An adaptive control scheme for coordinated multimanipulator systems,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2, pp. 226–231, 1993. [click]CrossRefGoogle Scholar
  29. [29]
    W.-H. Zhu, “Virtual Decomposition Control: Toward Hyper Degrees of Freedom Robots,” Springer, vol. 60, 2010.CrossRefzbMATHGoogle Scholar
  30. [30]
    R. C. Baker and B. Charlie, “Nonlinear unstable systems,” International Journal of Control. vol. 23, no. 4, pp. 123–145, May 1989.Google Scholar
  31. [31]
    A. Alcocera, A. Robertssona, A. Valerac, and R. Johanssona, “Force estimation and control in robot manipulators,” in Robot Control: A Proceedings Volume from the 7th IFAC Symposium, Wrocaw,vol. 1, pp. 55, 2004.Google Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Abdelkrim Brahmi
    • 1
    Email author
  • Maarouf Saad
    • 1
  • Guy Gauthier
    • 1
  • Wen-Hong Zhu
    • 2
  • Jawhar Ghommam
    • 3
  1. 1.École de technologie supérieureMontrealCanada
  2. 2.Space Exploration Canadian Space AgencySaint-HubertCanada
  3. 3.École National d’Ingenieurs de Sfax, Research Unit on Mechatronics and Automation SystemsBPWSfaxTunisia

Personalised recommendations