Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Assessing the suitability of smart technology applications for e-health using a judgment-decomposition analytic hierarchy process approach

  • 3 Accesses

Abstract

Smart technologies have been extensively applied to e-health. However, whether existing smart technology applications for e-health are sustainable is questionable. To assess the sustainability of a smart technology application for e-health, this study proposes the judgment-decomposition analytic hierarchy process (JD-AHP) approach. In the proposed JD-AHP approach, a decision-maker’s judgment matrix is decomposed into several subjudgment matrices that are more consistent than the judgment matrix and that represent diversified viewpoints for assessing the sustainability of a smart technology application for e-health. Then, the priorities of factors critical to sustainability are derived from the subjudgment matrices by optimizing a mixed-integer nonlinear programming model. The JD-AHP approach was applied to assess the sustainabilities of 10 smart technology applications for e-health. According to the evaluation results, smart clothes had the least sustainability, whereas smart glasses and smart wheelchair had uncertain sustainabilities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Al-Refaie A, Chen T, Judeh M. Optimal operating room scheduling for normal and unexpected events in a smart hospital. Oper Res. 2018;18(3):579–602.

  2. 2.

    Bana e Costa C, Corte JM, Vansnick JC. On the mathematical foundation of MACBETH. Multiple Criteria Decision Analysis: State of the Art Surveys, 2005;409–437.

  3. 3.

    Bhatia K, Singh M. Towards development of portable instantaneous smart optical device for hemoglobin detection non invasively. Heal Technol. 2019;9(1):17–23.

  4. 4.

    Bieber G, Kirste T, Urban B. Ambient interaction by smart watches. Proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments, (2012);39.

  5. 5.

    Chen T. Ubiquitous multicriteria clinic recommendation system. J Med Syst. 2016;40(5):113.

  6. 6.

    Chen T, Chiu MC. Smart technologies for assisting the life quality of persons in a mobile environment: a review. J Ambient Intell Humaniz Comput. 2018;9(2):319–27.

  7. 7.

    Chen T, Lin YC. Feasibility evaluation and optimization of a smart manufacturing system based on 3d printing: a review. Int J Intell Syst. 2017;32(4):394–413.

  8. 8.

    Chen T, Tsai HR. Ubiquitous manufacturing: current practices, challenges, and opportunities. Robot Comput Integr Manuf. 2017;45:126–32.

  9. 9.

    Chen T, Chaovalitwongse WA, O'grady MJ, Honda K. Editorial: Smart technologies for improving the quality of mobile health care. Health Care Manag Sci. 2019. https://doi.org/10.1007/s10729-019-09487-z.

  10. 10.

    Chiu MC, Chen TCT. Assessing sustainable effectiveness of the adjustment mechanism of a ubiquitous clinic recommendation system. Health Care Manag Sci. 2019:1–10. https://doi.org/10.1007/s10729-019-09473-5.

  11. 11.

    Clark M, Goodwin N. Sustaining innovation in telehealth and telecare. WSD Action Network, King’s Fund; 2010.

  12. 12.

    Costa AM. A survey on benders decomposition applied to fixed-charge network design problems. Comput Oper Res. 2005;32(6):1429–50.

  13. 13.

    Dai J, Blackhurst J. A four-phase AHP–QFD approach for supplier assessment: a sustainability perspective. Int J Prod Res. 2012;50(19):5474–90.

  14. 14.

    Demiris G, Hensel BK, Skubic M, Rantz M. Senior residents’ perceived need of and preferences for “smart home” sensor technologies. Int J Technol Assess Health Care. 2008;24(1):120–4.

  15. 15.

    Eysenbach G. What is e-health? J Med Internet Res. 2001;3(2):e20.

  16. 16.

    Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 2013;10(1):e1001362.

  17. 17.

    Golub GH., & Van Loan CF. (1996). Matrix Computations. Johns Hopkins University Press, Baltimore and London.

  18. 18.

    Hamel MB, Cortez NG, Cohen IG, Kesselheim AS. FDA regulation of mobile health technologies. N Engl J Med. 2014;371(4):372.

  19. 19.

    Hanuska A, Chandramohan B, Bellamy L, Burke P, Ramanathan R, Balakrishnan V. Smart clothing market analysis. 2016; http://scet.berkeley.edu/wp-content/uploads/Smart-Clothing-Market-Analysis-Report.pdf. Accessed 18 Jan 2019.

  20. 20.

    Hayek A, Telawi S, Börcsök J, Daou RAZ, Halabi N. Smart wearable system for safety-related medical IoT application: case of epileptic patient working in industrial environment. Health Technol. 2019:1–10. https://doi.org/10.1007/s12553-019-00335-2.

  21. 21.

    Hollis, F. What is smart technology? 2015; http://incontrol-uk.com/what-is-smart-technology/. Accessed 13 Dec 2018.

  22. 22.

    Hossaini N, Reza B, Akhtar S, Sadiq R, Hewage K. AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver. J Environ Plan Manag. 2015;58(7):1217–41.

  23. 23.

    Jordan, M. (2011). What is ‘smart’ technology? http://knowit.co.nz/2011/08/what-is-smart-technology. Accessed 16 April 2016.

  24. 24.

    Li, Z. R., Chang, E. C., Huang K. H., & Lai, F. (2011). A secure electronic medical record sharing mechanism in the cloud computing platform. 15th IEEE International Symposium on Consumer Electronics, pp. 98-103.

  25. 25.

    Mann S. Smart clothing: the shift to wearable computing. Commun ACM. 1996;39(8):25–7.

  26. 26.

    Pandian PS, Mohanavelu K, Safeer KP, Kotresh TM, Shakunthala DT, Gopal P, et al. Smart vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys. 2008;30(4):466–77.

  27. 27.

    Phan D, Siong LY, Pathirana PN, Seneviratne A. Smartwatch: performance evaluation for long-term heart rate monitoring. 2015 International Symposium on Bioelectronics and Bioinformatics, 2015; 144-147.

  28. 28.

    Reeder B, David A. Health at hand: a systematic review of smart watch uses for health and wellness. J Biomed Inform. 2016;63:269–76.

  29. 29.

    Saaty TL. Decision making with the analytic hierarchy process. Int J Serv Sci. 2008;1(1):83–98.

  30. 30.

    Sarasohn-Kahn J. How smartphones are changing health care for consumers and providers. 2010; http://www.chcf.org/publications/2010/04/how-smartphones-are-changing-health-care-for-consumers-and-providers. Accessed 2019/2/3.

  31. 31.

    Schneegass S, Amft O. Smart textiles. Cham: Springer; 2017.

  32. 32.

    Shcherbina A, Mattsson CM, Waggott D, Salisbury H, Christle JW, Hastie T, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine. 2017;7(2):3.

  33. 33.

    van Doorn M. What does SMART technology actually mean? 2015; http://labs.sogeti.com/wat-smart-technology-actually-mean/. Accessed 13 Dec 13/12/2018

  34. 34.

    van Limburg M, van Gemert-Pijnen JE, Nijland N, Ossebaard HC, Hendrix RM, Seydel ER. Why business modeling is crucial in the development of eHealth technologies. J Med Internet Res. 2011;13(4):e124.

  35. 35.

    Ventola CL. Mobile devices and apps for health care professionals: uses and benefits. Pharmacy and Therapeutics. 2014;39(5):356.

  36. 36.

    Vodopivec-Jamsek V, de Jongh T, Gurol-Urganci I, Atun R, Car J. Mobile phone messaging for preventive health care. Cochrane Database of Systematic Reviews. 2012;12 article no. CD007457.

  37. 37.

    Wang YC, Chen T, Lin YC. A collaborative and ubiquitous system for fabricating dental parts using 3D printing technologies. Healthcare. 2019;7(3):103.

  38. 38.

    Yager RR, Kacprzyk J. The ordered weighted averaging operators: theory and applications. Berlin: Springer Science & Business Media; 2012.

Download references

Author information

Correspondence to Toly Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Computer Based Medical Systems

Appendix: The Enumeration Procedure

Appendix: The Enumeration Procedure

t1 = now;
A = [1 5 5 7 5;0.2 1 3 5 1;0.2 0.333 1 1 4; 0.143 0.2 1 1 3; 0.2 1 0.25 0.333 1];
[E V] = eig(A);
CI = (V(1,1)-5)/(5–1)
A1best = zeros(5,5);
A2best = zeros(5,5);
CI1best = 0;
CI2best = 0;
E1best = zeros(5,5);
E2best = zeros(5,5);
distbest = 0;
for i12 = 1:9
for i13 = 1:9
for i14 = 5:9
for i15 = 1:9
for i23 = 1:5
for i24 = 1:9
for i35 = 1:7
for i43 = 1:1
for i45 = 1:5
for i52 = 1:1
A1 = A;
A2 = A;
A1(1,2) = i12; A1(2,1) = 1/A1(1,2);
A1(1,3) = i13; A1(3,1) = 1/A1(1,3);
A1(1,4) = i14; A1(4,1) = 1/A1(1,4);
A1(1,5) = i15; A1(5,1) = 1/A1(1,5);
A1(2,3) = i23; A1(3,2) = 1/A1(2,3);
A1(2,4) = i24; A1(4,2) = 1/A1(2,4);
A1(3,5) = i35; A1(5,3) = 1/A1(3,5);
A1(4,3) = i43; A1(3,4) = 1/A1(4,3);
A1(4,5) = i45; A1(5,4) = 1/A1(4,5);
A1(5,2) = i52; A1(2,5) = 1/A1(5,2);
A2(1,2) = 2*A(1,2)-A1(1,2); A2(2,1) = 1/A2(1,2);
A2(1,3) = 2*A(1,3)-A1(1,3); A2(3,1) = 1/A2(1,3);
A2(1,4) = 2*A(1,4)-A1(1,4); A2(4,1) = 1/A2(1,4);
A2(1,5) = 2*A(1,5)-A1(1,5); A2(5,1) = 1/A2(1,5);
A2(2,3) = 2*A(2,3)-A1(2,3); A2(3,2) = 1/A2(2,3);
A2(2,4) = 2*A(2,4)-A1(2,4); A2(4,2) = 1/A2(2,4);
A2(3,5) = 2*A(3,5)-A1(3,5); A2(5,3) = 1/A2(3,5);
A2(4,3) = 2*A(4,3)-A1(4,3); A2(3,4) = 1/A2(4,3);
A2(4,5) = 2*A(4,5)-A1(4,5); A2(5,4) = 1/A2(4,5);
A2(5,2) = 2*A(5,2)-A1(5,2); A2(2,5) = 1/A2(5,2);
[E1,V1] = eig(A1);
[E2,V2] = eig(A2);
CI1 = (V1(1,1)-5)/(5–1);
CI2 = (V2(1,1)-5)/(5–1);
if CI1 < =CI & CI2 < =CI
dist = sqrt(sum(sum((A1-A2).^2)));
if dist>distbest
distbest = dist;
A1best = A1;
A2best = A2;
CI1best = CI1;
CI2best = CI2;
E1best = E1;
E2best = E2;
end
end
end
end
end
end
end
end
end
end
end
end
t2 = now;
runtime = (t2-t1)*24*60*60
A1best
CI1best
E1best
A2best
CI2best
E2best

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wu, H. Assessing the suitability of smart technology applications for e-health using a judgment-decomposition analytic hierarchy process approach. Health Technol. (2020). https://doi.org/10.1007/s12553-020-00408-7

Download citation

Keywords

  • Smart technology
  • e-health
  • Judgment decomposition
  • Analytic hierarchy process
  • Consistency