Advertisement

Nanocomposites: a brief review

  • Enisa Omanović-Mikličanin
  • Almir Badnjević
  • Anera KazlagićEmail author
  • Muhamed Hajlovac
Original Paper
  • 1 Downloads

Abstract

Nanocomposite material consists out of several phases where at least one, two or three dimensions are in nanometer range. Taking material dimensions down to nanometer level creates phase interfaces which are very important for enhancement of materials properties. The ratio between surface area and volume of reinforced material used during nanocomposites preparation is directly involved in understanding of structure-property relationship. Nanocomposties offer opportunities on completely new scales for solving obstacles ranging from medical, pharmaceutical industry, food packaging, to electronics and energy industry. This paper presents main ideas behind nanocomposites and discusses matrix materials upon which nanocomposites can be divided in three classes; metal matrix, ceramic matrix and polymer matrix nanocomposites. The goal is to explain which raw material and technique is most suited for processing of a particular nanocomposites as well as application, advantages and drawbacks of nanocomposites. Nanotechnology is still in development and current limitations hinder global transition from macro-scale to nano-scale.

Keywords

Nanocomposites Processing Application Technique 

Notes

Compliance with ethical approval

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Kiesler E. Miniature device could unlock the promise of some kidney cancer drugs. Retrieved from https://www.mskcc.org/blog/miniature-device-could-unlock-promise-some-kidney-drugs. (2015).Google Scholar
  2. 2.
    Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.CrossRefGoogle Scholar
  3. 3.
    Halloysite Nano Clay (Al2Si2O5(OH)42H2O+SiO2). Retrieved from http://www.reade.com/products/halloysite-nano-clay-al2si2o5-oh-42h2o-sio2. (2018).
  4. 4.
    Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci. 2002;6(3):205–12.CrossRefGoogle Scholar
  5. 5.
    Wang RM, Zheng SR, Zheng YP. Polymer matrix composites and technology. Woodhead Publishing Limited and Science Press Limited (2011).Google Scholar
  6. 6.
    Lange FF. Effect of microstructure on strength of si3n4-sic composite system. 56(9):445–450. (1973).Google Scholar
  7. 7.
    Becher PF. Microstructural design of toughened ceramics. J Am Ceram Soc. 1991;74(2):255–69.CrossRefGoogle Scholar
  8. 8.
    Harmer M, Chan HM, Miller GA. Unique opportunities for microstructural engineering with duplex and laminar ceramic composites. J Am Ceram Soc. 1992;75(2):1715–28.CrossRefGoogle Scholar
  9. 9.
    Fernando W, Satyanarayana KG. Functionalization of single layers and nanofibers: a new strategy to produce polymer nanaocomposites with optimized properties. 285(1):532–543. (2005).Google Scholar
  10. 10.
    Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28(1–2):1–63.CrossRefGoogle Scholar
  11. 11.
    Theng BKG. The chemistry of clay-organic reactions. New York: Wiley; 1974.Google Scholar
  12. 12.
    Ogawa M, Kuroda K. Preparation of inorganic composites through intercalation of organo ammoniumions into layered silicates. Bull Chem Soc Jpn. 1997;70(11):2593–618.CrossRefGoogle Scholar
  13. 13.
    Noh MW, Lee DC. Synthesis and characterization of ps-clay nanocomposite by emulsion polymerization. Polym Bull. 1999;42(5):619–26.CrossRefGoogle Scholar
  14. 14.
    Yu Z, Pei Y, Lai S, Li S, Feng Y, Liu X. Single-source-precursor synthesis, microstructure and high temperature behavior of TiC-TiB2-SiC ceramic nanocomposites. Ceramics International.  https://doi.org/10.1016/j.ceramint.2017.01.117. (2017).CrossRefGoogle Scholar
  15. 15.
    Long X, Shao C, Wang H, Wang J. Single-source-precursor synthesis of SiBNC-Zr ceramic nanocomposites fibers. Ceram Int. 2016;42(16):19206–11.CrossRefGoogle Scholar
  16. 16.
    Sun N, Jeurgensc LPH, Burghardb Z, Billb J. Ionic liquid assisted fabrication of high performance SWNTs reinforced ceramic matrix nano-composites. Ceram Int. 2017;43(2):2297–304.CrossRefGoogle Scholar
  17. 17.
    Ghasali E, Yazdani-rad R, Asadian K, Ebadzadeh T. Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. J Alloys Compd. 2016.  https://doi.org/10.1016/j.jallcom.2016.08.145.CrossRefGoogle Scholar
  18. 18.
    Yan X, Sahimi M, Tsotsis T. Fabrication of high-surface area nanoporous SiOC ceramics using pre-ceramic polymer precursors and a sacrificial template: Precursor effects Microporous and Mesoporous Materials.  https://doi.org/10.1016/j.micromeso.2016.12.027. (2017).CrossRefGoogle Scholar
  19. 19.
    He J, Gao Y, Wang Y, Fang J, An L. Synthesis of ZrB2-SiC nanocomposite powder via polymeric precursor route. Ceram Int. 2016.  https://doi.org/10.1016/j.ceramint.2016.10.073.CrossRefGoogle Scholar
  20. 20.
    Choia H, Yoonb SP, Hanb J, Kima J, Othmanc MR. Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. J Alloys Compd. 2016.  https://doi.org/10.1016/j.jallcom.2016.08.145.CrossRefGoogle Scholar
  21. 21.
    Brooke R, Fabretto M, Murphy P, Evans D, Cottis P, Talemi P. Recent advances in the synthesis of conducting polymers from the vapour phase. Prog Mater Sci.  https://doi.org/10.1016/j.pmatsci.2017.01.004. (2017).CrossRefGoogle Scholar
  22. 22.
    Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities materials research 12(1) 1–39. (2009).Google Scholar
  23. 23.
    Yua Z, Lia S, Zhanga P, Fenga Y, Liua X. Polymer-derived mesoporous Ni/SiOC(H) ceramic nanocomposites for efficient removal of acid fuchsin. Ceram Int. 2016.  https://doi.org/10.1016/j.ceramint.2016.12.104.CrossRefGoogle Scholar
  24. 24.
    Dezfuly RF, Yousefi R, Jamali-Sheini F. Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram Int. 2016.  https://doi.org/10.1016/j.ceramint.2016.01.150.CrossRefGoogle Scholar
  25. 25.
    Garmendia N, Olalde B, Obieta I. Biomedical applications of ceramic nanocomposites. Ceramic Nanocomposites, A volume in Woodhead Publishing Series in Composites Science and Engineering, 530–547. (2013).Google Scholar
  26. 26.
    Gamal-Eldeena AM, Abdel-Hameedc SAM, El-Dalya SM, Abo-Zeida MAM, Swellamb MM. Cytotoxic effect of ferrimagnetic glass-ceramic nanocomposites on bone osteosarcoma cells. Biomed Pharmacother. 2017;88:689–97.CrossRefGoogle Scholar
  27. 27.
    Lee HS, Choi MY, Anandhan S, Baik DH, Seo SW. Microphase structure and physical properties of polyurethane/organoclay nanocomposites. ACS PMSE preprints. 2004;91:638.Google Scholar
  28. 28.
    Kobayashi T. Applied environmental materials science for sustainability. IgI Global (2016).Google Scholar
  29. 29.
    Dermenci KB, Gencc B, Ebinb B, Olmez-Hanci T, Gürmen S. Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method. J Alloys Compd. 2014;586:267–73.CrossRefGoogle Scholar
  30. 30.
    Kashinath L, Namratha K, Byrappa K. Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-RGO nanocomposite for efficient photodegradation of dyes. J Alloys Compd.  https://doi.org/10.1016/j.jallcom.2016.10.063. (2016).CrossRefGoogle Scholar
  31. 31.
    Ren Q, Su H, Zhang J, Ma W, Yao B, Liu L, et al. Rapid eutectic growth of Al2O3/Er3Al5O12 nanocomposite prepared by a new method: Melt falling-drop quenching. Scr Mater. 2016;125:39–43.CrossRefGoogle Scholar
  32. 32.
    Abdelhamid HN, Talib A, Wu HF. One pot synthesis of gold - carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta. 2016.  https://doi.org/10.1016/j.talanta.2016.11.030.CrossRefGoogle Scholar
  33. 33.
    Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng. 2015.  https://doi.org/10.1016/j.msec.2015.11.023.CrossRefGoogle Scholar
  34. 34.
    Królikowski W, Rosłaniec Z. Nanokompozyty polimerowe. Composites. Polish Ministry of Science. Wydawnictwo Politechniki Czestochwskie. 2004;4:3–16.Google Scholar
  35. 35.
    Spasówka E, Rudnik E, Kijeński J. Biodegradowalne nanokompozytypolimerowe. Polimery. 2006;51:617–26.CrossRefGoogle Scholar
  36. 36.
    Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Composites part A - Applied Science. 2004;35(1):67–74.CrossRefGoogle Scholar
  37. 37.
    Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28(1–2):1–63.CrossRefGoogle Scholar
  38. 38.
    Rehab A, Salahuddin N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater Sci Eng A. 2005;399:368–76.CrossRefGoogle Scholar
  39. 39.
    Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40(17):1511–75.CrossRefGoogle Scholar
  40. 40.
    Kornmann X, Linderberg H, Bergund LA. Synthesis of epoxy–clay nanocomposites: influence of the nature of the curing agent on structure. Polymer. 2001;42:4493–9.CrossRefGoogle Scholar
  41. 41.
    Anandhan S, Bandyopadhyay S. Polymer nanocomposites: from synthesis to applications. INTECH Open Access Publisher (2011).Google Scholar
  42. 42.
    Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J. 2011;43:223–241.-287.CrossRefGoogle Scholar
  43. 43.
    Bai H, Ho W. New sulfonated polybenzimidazole (SPBI) copolymer-based protonexchange membranes for fuel cells. J Taiwan Inst Chem Eng. 2008;40:260–7.CrossRefGoogle Scholar
  44. 44.
    Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6):1034–47.CrossRefGoogle Scholar
  45. 45.
    Nayaka SS, Pabi SK, Kimb DH, Murtyc BS. Microstructure-hardness relationship of Al–(L12)Al3Ti nanocomposites prepared by rapid solidification processing. Intermetallics. 2010;18:487–92.CrossRefGoogle Scholar
  46. 46.
    Fiorito S, Serafino A, Andreola F, Bernier P. Effects of fullerenes and singlewall carbon nanotubes on murine and human macrophages. Carbon. 2006;44(6):1100–5.CrossRefGoogle Scholar
  47. 47.
    Hurt RH, Monthioux M, Kane A. toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon. 2006;44(6):1028–33.CrossRefGoogle Scholar
  48. 48.
    Yao Y, Chen L. Processing of B4C Particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique. J Mater Sci Technol. 2014;30(7):661–5.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Wilson M, Kannangara K, Smith G, Simmons M, Raguse B. Nanotechnology: basic science and emerging technologies. Boca Raton: CRC press; 2002.CrossRefGoogle Scholar
  50. 50.
    Mackenzie JD, Chung YJ, Hu Y. J Non-Cryst Solids 147&148, 271. (1992).Google Scholar
  51. 51.
    Mège-Revil A, Steyer P, Cardinal S, Thollet G, Esnouf C, Jacquot P, et al. Correlation between thermal fatigue and thermomechanical properties during the oxidation of multilayered TiSiN nanocomposite coatings synthesized by a hybrid physical/chemical vapour deposition process. Thin Solid Films. 2010;518:5932–7.CrossRefGoogle Scholar
  52. 52.
    Scarisoreanu M, Fleaca C, Morjan I, Niculescu AM, Luculescu C, Dutu E, et al. High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis. Appl Surf Sci. 2017.  https://doi.org/10.1016/j.apsusc.2016.12.122.CrossRefGoogle Scholar
  53. 53.
    Dehgahi S, Amini R, Alizadeh M. Microstructure and corrosion resistance of Ni-Al2O3-SiC nanocomposite coatings produced by electrodeposition technique. J Alloys Compd. 2017.  https://doi.org/10.1016/j.jallcom.2016.08.244.CrossRefGoogle Scholar
  54. 54.
    Dios M, Gonzalez Z, Gordoa E, Ferrari B. Semiconductor-metal core-shell nanostructures by colloidal heterocoagulation in aqueous medium. Mater Lett. 2016;180:327–33.CrossRefGoogle Scholar

Copyright information

© IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Enisa Omanović-Mikličanin
    • 1
  • Almir Badnjević
    • 2
  • Anera Kazlagić
    • 1
    Email author
  • Muhamed Hajlovac
    • 1
  1. 1.Faculty of Agriculture and Food SciencesUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Verlab Ltd; SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations