Advertisement

Multimodal 3D rigid image registration based on expectation maximization

  • M. J. Velázquez-DuránEmail author
  • D. U. Campos-Delgado
  • E. R. Arce-Santana
  • A. R. Mejía-Rodríguez
Original Paper
  • 42 Downloads
Part of the following topical collections:
  1. CNIB 2018: Technologies for improving Health

Abstract

Image registration is an important task in medical imaging, capable of finding displacement fields to align two images of the same anatomic structure under different conditions (e.g. acquisition time and body position). Specifically, multimodal image registration is the process of aligning two or more images of the same scene using different image acquisition techniques. In fact, most of the current image registration approaches are based on Mutual Information (MI) as a similarity metric for image comparison; however, the cost function used in MI methods is difficult to optimize due to complex relationships between variables and pixels intensities. This work presents an Expectation Maximization (EM) 3D multimodal rigid registration approach, which introduces a low computational cost alternative with a linear optimization strategy and an intuitive relation among the free variables. Our approach was validated against a state-of-the-art MI-based technique with synthetic T1 MRI brain volumes. The EM 3D achieved a global average DICE index of 96.68 % with a computational time of 22.72 seconds, whereas the MI methodology reported 96.11 % and 35.13 seconds, respectively.

Keywords

Expectation maximization Medical imaging Multimodal rigid registration Mutual information 

Notes

Acknowledgements

This research was supported by Mexico’s National Council of Science and Technology (Conacyt) through a PhD grant number 362210 and a Basic Science project number 254637.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Arce-Santana E, Campos-Delgado D, Vigueras-Gómez F, Reducindo I, Mejía-Rodríguez A. Non-rigid multimodal image registration based on the expectation-maximization algorithm. Lect Notes Comput Sci 2014;8333:36–47.CrossRefGoogle Scholar
  2. 2.
    Arce-Santana ER, Campos-Delgado DU, Reducindo I, Mejia-Rodriguez AR. Multimodal image registration based on the expectation–maximisation methodology. IET Image Proc 2017;11:1246–1253(7). https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2017.0234.CrossRefGoogle Scholar
  3. 3.
    Baker S, Matthews I. Equivalence and efficiency of image alignment algorithms. Proceedings of the 2001 IEEE conference on computer vision and pattern recognition, vol 1, pp 1090–1097; 2001.Google Scholar
  4. 4.
    Bron E E, van Tiel J, Smit H, Poot D H J, Niessen W J, Krestin G P, Weinans H, Oei E H G, Kotek G, Klein S. Image registration improves human knee cartilage t1 mapping with delayed gadolinium-enhanced mri of cartilage (dgemric). Eur Radiol 2012;23(1):246–252.CrossRefGoogle Scholar
  5. 5.
    Burt P J, Adelson E H. The laplacian pyramid as a compact image code. IEEE Transactions on Communications 1983;31:532– 540.CrossRefGoogle Scholar
  6. 6.
    Cocosco C A, Kollokian V, Kwan R K S, Pike G B, Evans A C. Brainweb: Online interface to a 3d mri simulated brain database. Neuroimage 1997;5:425.Google Scholar
  7. 7.
    Crum W, Hartkens T, Hill D. Non-rigid image registration: theory and practice. Br J Radiol 2004;77 (SPEC. ISS. 2):S140– S153.CrossRefGoogle Scholar
  8. 8.
    de Groot M, Vernooij M W, Klein S, Ikram M A, Vos F M, Smith S M, Niessen W J, Andersson J L. Improving alignment in tract-based spatial statistics: Evaluation and optimization of image registration. Neuroimage 2013;76:400–411.CrossRefGoogle Scholar
  9. 9.
    Guyader J M, Bernardin L, Douglas N, Poot D, Niessen W, Klein S. Influence of image registration on apparent diffusion coefficient images computed from free-breathing diffusion mr images of the abdomen. J Magn Reson Imaging 2015;42(2):315– 330.CrossRefGoogle Scholar
  10. 10.
    Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001; 46(3):R1. http://stacks.iop.org/0031-9155/46/i=3/a=201.CrossRefGoogle Scholar
  11. 11.
    Klein S, Staring M, Murphy K, Viergever M A, Pluim JPW. Elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010;29(1):196–205.CrossRefGoogle Scholar
  12. 12.
    Murino V, Puppo E, Sona D, Cristani M, Sansone C. 2015. New trends in image analysis and processing – ICIAP 2015 workshops: ICIAP 2015 international workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7-8, 2015, Proceedings. Lecture Notes in Computer Science. Springer International Publishing. https://books.google.com.mx/books?id=nKxnCgAAQBAJ.
  13. 13.
    Pluim J P W, Maintz J B A, Viergever M A. 2003. Mutual-information-based registration of medical images: a survey. IEEE Transcations on Medical Imaging, pp 986–1004.Google Scholar
  14. 14.
    Risser LEA. Piecewise-diffeomorphic image registration: Application to the motion estimation between 3d ct lung images with sliding conditions. Med Image Anal 2012;17(2):182– 193.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: A survey. IEEE Trans Med Imaging 2013;32(7):1153–1190.CrossRefGoogle Scholar

Copyright information

© IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad Autonóma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations