Health and Technology

, Volume 7, Issue 1, pp 61–70 | Cite as

Lung mechanics - airway resistance in the dynamic elastance model

  • B. LauferEmail author
  • J. Kretschmer
  • P. D. Docherty
  • Y. S. Chiew
  • K. Möller
Original Paper
Part of the following topical collections:
  1. Systems Medicine


The selection of optimal positive end-expiratory pressure (PEEP) levels during mechanical ventilation therapy of patients with acute respiratory distress syndrome (ARDS) remains a problem for clinicians. A particular mooted strategy states that minimizing the energy transferred to the lung during mechanical ventilation could potentially be used to determine the optimal, patient-specific PEEP levels. Furthermore, the dynamic elastance model of pulmonary mechanics could possibly be applied to minimize the energy by localization of the patients’ minimum dynamic elastance range. The sensitivity of the dynamic elastance model to variance in the airway resistance was analyzed. Additionally, the airway resistance was determined by using three other established identification methods and was compared to the constant resistance obtained by the dynamic elastance model. For increasing PEEP, the alternative identification methods showed similar decreasing trends of the resistance during inspiration. This declining trend is apparently an exponential decrease. Results showed that the constant airway resistance, presumed by the dynamic elastance model, has to be rechecked and investigated.


Lung mechanics Physiological modelling First order model Dynamic elastance model Mechanical ventilation Airway resistance 



This work was partially supported by the EU (eTime, Grant FP7-PIRSES 318943).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.CrossRefGoogle Scholar
  2. 2.
    Matthay M, Ware L, Zimmerman G. The acute respiratory distress syndrome. J Clin Invest. 2012;122(2731):40.Google Scholar
  3. 3.
    Koh Y. Update in acute respiratory distress syndrome. J Intensive Care. 2014;2(1):2. doi: 10.1186/2052-0492-2-2.CrossRefGoogle Scholar
  4. 4.
    Saguil A, Fargo M. Acute respiratory distress syndrome: diagnosis and management. Am Fam Physician. 2012;85(4):352–8.Google Scholar
  5. 5.
    Silversides J, Ferguson N. Clinical review: acute respiratory distress syndrome - clinical ventilator management and adjunct therapy. Crit Care. 2013;17(2):225.CrossRefGoogle Scholar
  6. 6.
    Donahoe M. Acute respiratory distress syndrome: a clinical review. Pulmonary Circulation 2011; 1(2):192–211. doi: 10.4103/2045-8932.83454.
  7. 7.
    Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, et al. Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/Derecruitment. Am J Respir Crit Care Med. 2003;167(12):1620–6.CrossRefGoogle Scholar
  8. 8.
    Acute-Respiratory-Distress-Syndrome-Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med. 2000;342(18):1301–8. doi: 10.1056/NEJM200005043421801.CrossRefGoogle Scholar
  9. 9.
    Cobelli C. Introduction to modeling in physiology and medicine. 1st ed ed. Academic Press series in biomedical engineering. Amsterdam: Academic Press; 2008.Google Scholar
  10. 10.
    Bates JHT. Lung Mechanics: An Inverse Modeling Approach. United States of America: Cambridge University Press; 2009.CrossRefGoogle Scholar
  11. 11.
    Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T, Model-based PEEP. Optimisation in mechanical ventilation. Biomed Eng Online. 2011;10(1):111.CrossRefGoogle Scholar
  12. 12.
    van Drunen E, Chiew YS, Pretty C, Shaw G, Lambermont B, Janssen N, et al. Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulm Med. 2014;14(1):33.CrossRefGoogle Scholar
  13. 13.
    Suter P, Fairley B, Isenberg M. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.CrossRefGoogle Scholar
  14. 14.
    Chiew Y, Pretty C, Shaw G, Chiew Y, Lambermont B, Desaive T, et al. Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasibility Studies. 2015;1(1):1–10. doi: 10.1186/s40814-015-0006-2.CrossRefGoogle Scholar
  15. 15.
    Laufer B, Kretschmer J, Docherty PD, Chiew YS, Möller K. The influence of airway resistance in the dynamic elastance model. In: Kyriacou E, Christofides S, Pattichis CS, editors. XIV Mediterranean conference on medical and biological engineering and Computing 2016: MEDICON 2016, March 31st–April 2nd 2016, Paphos: Springer International Publishing; 2016. p. 56–61.Google Scholar
  16. 16.
    Knörzer A, Docherty PD, Chiew YS, Chase JG, Möller K. An Extension to the First Order Model of Pulmonary Mechanics to Capure a Pressure dependent Elastance in the Human Lung. Conference paper to 19th IFAC World Congress. 2014.Google Scholar
  17. 17.
    Laufer B, Docherty PD, Chiew YS, Moeller K, Chase JG, editors. Identifying pressure dependent elastance in lung mechanics with reduced influence of unmodelled effects. BMS 2015; 2015; Berlin.Google Scholar
  18. 18.
    Laufer B, Docherty PD, Knörzer A, Chiew YS, Langdon R, Möller K et al. Performance of variations of the dynamic elastance model in lung mechanics. Control Engineering Practice 2017, vol. 58, pp. 262–7.Google Scholar
  19. 19.
    Zilles K, Tillmann B. Anatomie. Springer; 2010.Google Scholar
  20. 20.
    Mogensen ML, Steimle KS, Karbing DS, Andreassen SA. Model of perfusion of the healthy human lung. Comput Methods Prog Biomed. 2011;101(2):156–65. doi: 10.1016/j.cmpb.2010.06.020.CrossRefGoogle Scholar
  21. 21.
    Kaminsky DA. What does airway resistance tell us about lung function? Respir Care. 2012;57(1):85–99. doi: 10.4187/respcare.01411.CrossRefGoogle Scholar
  22. 22.
    Kramme R. Medizintechnik : Verfahren – Systeme – Informationsverarbeitung. 4., vollständig überarbeitete und erweiterte Auflage ed. SpringerLink: Bücher. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. doi: 10.1007/978-3-642-16187-2.
  23. 23.
    DuBois AB, Botelho SY, Comroe JHA. New method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and patients with respiratory disease. J Clin Invest. 1956;35(3):327–35.CrossRefGoogle Scholar
  24. 24.
    Blonshine S, Goldman MD. Optimizing performance of respiratory airflow resistance measurements. Chest. 2008;134(6):1304–9. doi: 10.1378/chest.06-2898.CrossRefGoogle Scholar
  25. 25.
    Bersten AD. Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J. 1998;12(3):526–32.CrossRefGoogle Scholar
  26. 26.
    Stahl CA, Moller K, Schumann S, Kuhlen R, Sydow M, Putensen C, et al. Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2006;34(2090):8.Google Scholar
  27. 27.
    van Drunen E, Chiew YS, Chase J, Shaw G, Lambermont B, Janssen N, et al. Expiratory model-based method to monitor ARDS disease state. Biomed Eng Online. 2013;12(1):57.CrossRefGoogle Scholar

Copyright information

© IUPESM and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Technical Medicine (ITeM)Furtwangen UniversityVillingen-SchwenningenGermany
  2. 2.Department of Mechanical EngineeringUniversity of CanterburyChristchurchNew Zealand
  3. 3.School of EngineeringMonash University MalaysiaBandar SunwayMalaysia

Personalised recommendations