Some thoughts on the future of cell mechanics

  • Jochen GuckEmail author

Cell mechanics research is at a crucial juncture in its decades-old history (for a good historical perspective, see for example Pelling and Horton 2008). One of several reasons that research on the mechanical properties of cells has been actively pursued for many decades is the functional link between cell mechanics and the cell cytoskeleton, a dynamic structure made of different protein filaments and their accessory proteins. This cytoskeleton is involved in such important biological processes as cell migration or cell division and characteristically altered in many diseases such as cancer. Whenever a cell changes its function or becomes pathologically altered, the cytoskeleton restructures, which inevitably leads to tell-tale mechanical changes. In this sense, one can use a mechanical test to feelfor cell functional changes. This premise is attractive, because it permits the unbiased, non-destructive, and sensitive investigation of cell interior processes and potentially even the...



I want to thank M. Kräter, D. Soteriou, and M. Kubankova for the critical reading of the manuscript and B. Baum, C. Cannistraci, D. Di Carlo, E. Chilvers, E. Darling, D. Discher, B. Fabry, J. Goetz, P. Janmey, W. Lam, S. Manalis, D. Robinson, A. Rowat, U. Schwarz, A. Surcel, T. Sulcheck, K. Tanner, and V. Zaburdaev and all members of my group for important recent discussions. I also want to acknowledge the important work by many others in the cell mechanics community whose work I have failed to mention explicitly in this text.


  1. Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF (2012) Microfluidics-based assessment of cell deformability. Anal Chem 84(15). American Chemical Society):6438–6443. CrossRefGoogle Scholar
  2. Ahmmed SM, Bithi SS, Pore AA, Mubtasim N, Schuster C, Gollahon LS, Vanapalli SA (2018) Multi-sample deformability cytometry of cancer cells. APL Bioeng 2(3):032002–032015. CrossRefGoogle Scholar
  3. Armistead FJ, Gala De Pablo J, Gadêlha H, Peyman SA, Evans SD (2019) Cells under stress: an inertial-shear microfluidic determination of cell behavior. Biophys J 116(6). Biophysical Society:):1127–1135. CrossRefGoogle Scholar
  4. Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12(6):1048–1051. CrossRefGoogle Scholar
  5. Byun S, Son S, Amodei D, Cermak N, Shaw J, Kang JH, Hecht VC et al (2013) Characterizing deformability and surface friction of cancer cells. Pnas 110(19):7580–7585. CrossRefGoogle Scholar
  6. Ciucci S, Ge Y, Durán C, Palladini A, Jiménez-Jiménez V, Martínez-Sánchez LM, Wang Y, et al. 2017. “Enlightening discriminative network functional modules behind principal component analysis separation in differential-omic science studies.” Scientific Reports 7 (March). Nature Publishing Group: 43946. doi:
  7. Darling EM, Di Carlo D (2015) High-throughput assessment of cellular mechanical properties. Annu Rev Biomed Eng 17(1). Annual Reviews):35–62. CrossRefGoogle Scholar
  8. Di Carlo D (2012) A mechanical biomarker of cell state in medicine. Jala 17(1). SAGE Publications):32–42. Google Scholar
  9. Girardo S, Nicole Träber K, Wagner G, Cojoc C, Herold R, Goswami RS et al (2018) Standardized microgel beads as elastic cell mechanical probes. J Mater Chem B 456. The Royal Society of Chemistry:3. Google Scholar
  10. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635. CrossRefGoogle Scholar
  11. Guck J, Chilvers ER (2013) Mechanics meets medicine. Sci Transl Med 5(212):212fs41. CrossRefGoogle Scholar
  12. Guillou L, Dahl JB, Lin JG, Barakat AI, Husson J, Muller SJ, Kumar S (2016) Measuring cell viscoelastic properties using a microfluidic extensional flow device. Biophys J 111(9). Cell Press):2039–2050. CrossRefGoogle Scholar
  13. Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, Fabry B (2015) Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 109(1). Elsevier):26–34. CrossRefGoogle Scholar
  14. Myers DR, Qiu Y, Fay ME, Tennenbaum M, Chester D, Cuadrado J, Sakurai Y et al (2016) Single-platelet nanomechanics measured by high-throughput cytometry. Nat Mater 16(2). Nature Research):230–235. CrossRefGoogle Scholar
  15. Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC (2017) Quantitative deformability cytometry: rapid, calibrated measurements of cell mechanical properties. Biophys J 113(7):1574–1584. CrossRefGoogle Scholar
  16. Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12(3):199–202. CrossRefGoogle Scholar
  17. Pelling AE, Horton MA (2008) An historical perspective on cell mechanics. Arch Eur J Physiol 456(1):3–12. CrossRefGoogle Scholar
  18. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT et al (2012) The nanomechanical signature of breast cancer.” Nature Nanotechnology. Nat Publ Group 7(11):757–765. Google Scholar
  19. Rosendahl P, Plak K, Jacobi A, Kraeter M, Toepfner N, Otto O, Herold C et al (2018) Real-time fluorescence and deformability cytometry.” Nature Methods. Nat Publ Group 15(5):355–358. Google Scholar
  20. Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ, Kamm RD, Yun SH (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12(12):1132–1134. CrossRefGoogle Scholar
  21. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science (New York, NY) 299(5613). American Association for the Advancement of Science):1743–1747. CrossRefGoogle Scholar
  22. Surcel A, Schiffhauer ES, Thomas DG, Zhu Q, DiNapoli KT, Herbig M, Otto O et al (2019) Targeting mechanoresponsive proteins in pancreatic cancer: 4-hydroxyacetophenone blocks dissemination and invasion by activating MYH14. Cancer Research, January American Association for Cancer Research, canres.3131.2018.
  23. Toepfner N, Herold C, Otto O, Rosendahl P, Jacobi A, Kräter M, Stachele J et al (2018) Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. eLife 7(January). eLife sciences publications limited):e29213. CrossRefGoogle Scholar
  24. Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, and Muller DJ. 2017. “Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding.” Nature Communications, October Springer US, 1–10. doi:
  25. Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M, Ying Y, Mislick K, Adams RP, Rao J, Di Carlo D (2013) Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med 5(212):212ra163. CrossRefGoogle Scholar
  26. Wu P-H, Aroush DR-B, Asnacios A, Chen W-C, Dokukin ME, Doss BL, Durand-Smet P et al (2018) A comparison of methods to assess cell mechanical properties. Nat Methods 15(7):491–498. CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für die Physik des Lichts & Max-Planck-Zentrum für Physik und MedizinErlangenGermany

Personalised recommendations