Advertisement

Biophysical Reviews

, Volume 11, Issue 1, pp 55–65 | Cite as

Host and microbiome multi-omics integration: applications and methodologies

  • Qing Wang
  • Kaicen Wang
  • Wenrui Wu
  • Eleni Giannoulatou
  • Joshua W. K. Ho
  • Lanjuan LiEmail author
Review

Abstract

The study of the microbial community—the microbiome—associated with a human host is a maturing research field. It is increasingly clear that the composition of the human’s microbiome is associated with various diseases such as gastrointestinal diseases, liver diseases and metabolic diseases. Using high-throughput technologies such as next-generation sequencing and mass spectrometry–based metabolomics, we are able to comprehensively sequence the microbiome—the metagenome—and associate these data with the genomic, epigenomics, transcriptomic and metabolic profile of the host. Our review summarises the application of integrating host omics with microbiome as well as the analytical methods and related tools applied in these studies. In addition, potential future directions are discussed.

Keywords

Microbiome Genome Epigenome Transcriptome Metabolome Network analysis Big data 

Notes

Compliance with ethical standards

Funding

Funding was provided by the National Natural Science Foundation of China (grant nos. 81330011, 81330014, 81790631, 81790633, 81570512 and 81121002), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (grant no. 81721091), and the National Basic Research Program of China (973 program) (grant no. 2013CB531401). This work was also supported in part by funds from the New South Wales Ministry of Health, a National Health and Medical Research Council Career Development Fellowship (1105271 to JWKH) and the National Heart Foundation (Future Leader Fellowship 100848 to JWKH and 101204 to EG).

Conflict of interest

Qing Wang declares that she has no conflict of interest. Kaicen Wang declares that she has no conflict of interest. Wenrui Wu declares that she has no conflict of interest. Eleni Giannoulatou declares that she has no conflict of interest. Joshua W. K. Ho declares that he has no conflict of interest. Lanjuan Li declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdul-Aziz MA, Cooper A, Weyrich LS (2016) Exploring relationships between host genome and microbiome: new insights from genome-wide association studies. Front Microbiol 7:1611.  https://doi.org/10.3389/fmicb.2016.01611 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barko PC, McMichael MA, Swanson KS, Williams DA (2018) The gastrointestinal microbiome: a review. J Vet Intern Med 32:9–25.  https://doi.org/10.1111/jvim.14875 CrossRefPubMedGoogle Scholar
  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw.  https://doi.org/10.18637/jss.v067.i01
  4. Blekhman R, Goodrich JK, Huang K et al (2015) Host genetic variation impacts microbiome composition across human body sites. Genome Biol 16:191.  https://doi.org/10.1186/s13059-015-0759-1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonder MJ, Kurilshikov A, Tigchelaar EF et al (2016) The effect of host genetics on the gut microbiome. Nat Genet 48:1407–1412.  https://doi.org/10.1038/ng.3663 CrossRefPubMedGoogle Scholar
  6. Breitwieser FP, Lu J, Salzberg SL (2017) A review of methods and databases for metagenomic classification and assembly. Brief Bioinform.  https://doi.org/10.1093/bib/bbx120
  7. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castro-Nallar E, Shen Y, Freishtat RJ et al (2015) Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities. BMC Med Genet 8:50.  https://doi.org/10.1186/s12920-015-0121-1 CrossRefGoogle Scholar
  9. Chierico FD, Nobili V, Vernocchi P et al (2017) Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65:451–464.  https://doi.org/10.1002/hep.28572 CrossRefGoogle Scholar
  10. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270.  https://doi.org/10.1038/nrg3182 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chong J, Xia J (2017) Computational approaches for integrative analysis of the metabolome and microbiome. Metabolites 7(4):62.  https://doi.org/10.3390/metabo7040062 CrossRefPubMedCentralGoogle Scholar
  12. Chun H, Keleş S (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Ser B Stat Methodol 72:3–25.  https://doi.org/10.1111/j.1467-9868.2009.00723.x CrossRefGoogle Scholar
  13. Conti G, Frühwirth-Schnatter S, Heckman JJ, Piatek R (2014) Bayesian exploratory factor analysis. J Econom 183:31–57.  https://doi.org/10.1016/j.jeconom.2014.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Davenport ER, Cusanovich DA, Michelini K et al (2015) Genome-wide association studies of the human gut microbiota. PLoS One 10:e0140301.  https://doi.org/10.1371/journal.pone.0140301 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Devoid S, Overbeek R, DeJongh M et al (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985:17–45.  https://doi.org/10.1007/978-1-62703-299-5_2 CrossRefPubMedGoogle Scholar
  16. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930.  https://doi.org/10.1111/j.1654-1103.2003.tb02228.x CrossRefGoogle Scholar
  17. Dray S, Dufour A-B (2017) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw.  https://doi.org/10.18637/jss.v022.i04
  18. de Steenhuijsen Piters WAA, Heinonen S, Hasrat R et al (2016) Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med 194:1104–1115.  https://doi.org/10.1164/rccm.201602-0220OC CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dong X, Yambartsev A, Ramsey SA et al (2015) Reverse enGENEering of regulatory networks from big data: a roadmap for biologists. Bioinforma Biol Insights 9:61–74.  https://doi.org/10.4137/BBI.S12467 CrossRefGoogle Scholar
  20. Ge T, Chen C-Y, Neale BM et al (2017) Phenome-wide heritability analysis of the UK Biobank. PLoS Genet 13:e1006711.  https://doi.org/10.1371/journal.pgen.1006711 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Genomes Project (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65.  https://doi.org/10.1038/nature11632 CrossRefGoogle Scholar
  22. Gilbert JA, Blaser MJ, Caporaso JG et al (2018) Current understanding of the human microbiome. Nat Med 24:392–400.  https://doi.org/10.1038/nm.4517 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goodrich JK, Waters JL, Poole AC et al (2014) Human genetics shape the gut microbiome. Cell 159:789–799.  https://doi.org/10.1016/j.cell.2014.09.053 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goodrich JK, Davenport ER, Beaumont M et al (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–743.  https://doi.org/10.1016/j.chom.2016.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40:33–51.  https://doi.org/10.1007/BF02291478 CrossRefGoogle Scholar
  26. Hall AB, Tolonen AC, Xavier RJ (2017) Human genetic variation and the gut microbiome in disease. Nat Rev Genet 18:690–699.  https://doi.org/10.1038/nrg.2017.63 CrossRefPubMedGoogle Scholar
  27. Harris RA, Shah R, Hollister EB et al (2016) Colonic mucosal epigenome and microbiome development in children and adolescents. J Immunol Res 2016:9170162.  https://doi.org/10.1155/2016/9170162 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hill CJ, Lynch DB, Murphy K et al (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome 5:4.  https://doi.org/10.1186/s40168-016-0213-y CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hua X, Song L, Yu G, et al (2015) MicrobiomeGWAS: a tool for identifying host genetic variants associated with microbiome composition.  https://doi.org/10.1101/031187
  30. Huang Y, Ma S-F, Espindola MS et al (2017) Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 196:208–219.  https://doi.org/10.1164/rccm.201607-1525OC CrossRefPubMedPubMedCentralGoogle Scholar
  31. Igartua C, Davenport ER, Gilad Y et al (2017) Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. Microbiome 5:16.  https://doi.org/10.1186/s40168-016-0227-5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. iHMP Research Network Consortium (2014) The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–289.  https://doi.org/10.1016/j.chom.2014.08.014 CrossRefGoogle Scholar
  33. Imhann F, Vila AV, Bonder MJ et al (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67:108–119.  https://doi.org/10.1136/gutjnl-2016-312135 CrossRefPubMedGoogle Scholar
  34. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Phil Trans R Soc A 374:20150202.  https://doi.org/10.1098/rsta.2015.0202 CrossRefPubMedGoogle Scholar
  35. Kellermayer R (2017) Challenges for epigenetic research in inflammatory bowel diseases. Epigenomics 9:527–538.  https://doi.org/10.2217/epi-2016-0155 CrossRefPubMedGoogle Scholar
  36. Knights D, Silverberg MS, Weersma RK et al (2014) Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med 6:107.  https://doi.org/10.1186/s13073-014-0107-1 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kostic AD, Gevers D, Siljander H et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273.  https://doi.org/10.1016/j.chom.2015.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kreznar JH, Keller MP, Traeger LL et al (2017) Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep 18:1739–1750.  https://doi.org/10.1016/j.celrep.2017.01.062 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kroemer G, Zitvogel L (2018) Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nat Rev Immunol 18:87–88CrossRefGoogle Scholar
  40. Kumar H, Lund R, Laiho A et al (2014) Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. mBio 5:e02113–e02114.  https://doi.org/10.1128/mBio.02113-14 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kurilshikov A, Wijmenga C, Fu J, Zhernakova A (2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38:633–647.  https://doi.org/10.1016/j.it.2017.06.003 CrossRefPubMedGoogle Scholar
  42. Lam KC, Vyshenska D, Hu J et al (2018) Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ 6:e5590CrossRefGoogle Scholar
  43. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559.  https://doi.org/10.1186/1471-2105-9-559 CrossRefGoogle Scholar
  44. Larsen PE, Collart FR, Field D et al (2011) Predicted relative metabolomic turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inform Exp 1:4.  https://doi.org/10.1186/2042-5783-1-4 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li D, Xie Z, Le Pape M, Dye T (2015) An evaluation of statistical methods for DNA methylation microarray data analysis. BMC Bioinf 16:217.  https://doi.org/10.1186/s12859-015-0641-x CrossRefGoogle Scholar
  46. Lippert C, Listgarten J, Liu Y et al (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8:833–835.  https://doi.org/10.1038/nmeth.1681 CrossRefPubMedGoogle Scholar
  47. Lowe R, Shirley N, Bleackley M et al (2017) Transcriptomics technologies. PLoS Comput Biol 13:e1005457.  https://doi.org/10.1371/journal.pcbi.1005457 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578.  https://doi.org/10.1111/j.1574-6976.2008.00111.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lynch J, Tang K, Priya S et al (2017) HOMINID: a framework for identifying associations between host genetic variation and microbiome composition. GigaScience 6:1–7.  https://doi.org/10.1093/gigascience/gix107 CrossRefPubMedPubMedCentralGoogle Scholar
  50. McGeachie MJ, Sordillo JE, Gibson T et al (2016) Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks. Sci Rep 6:20359.  https://doi.org/10.1038/srep20359 CrossRefPubMedPubMedCentralGoogle Scholar
  51. McHardy IH, Goudarzi M, Tong M et al (2013) Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome 1:17.  https://doi.org/10.1186/2049-2618-1-17 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Meng C, Zeleznik OA, Thallinger GG et al (2016) Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform 17:628–641.  https://doi.org/10.1093/bib/bbv108 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Molyneaux PL, Willis-Owen SAG, Cox MJ et al (2017) Host–microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 195:1640–1650.  https://doi.org/10.1164/rccm.201607-1408OC CrossRefPubMedPubMedCentralGoogle Scholar
  54. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38.  https://doi.org/10.1038/npp.2012.112 CrossRefGoogle Scholar
  55. Morgan XC, Kabakchiev B, Waldron L et al (2015) Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol 16:67.  https://doi.org/10.1186/s13059-015-0637-x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Morgun A, Dzutsev A, Dong X et al (2015) Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64:1732–1743.  https://doi.org/10.1136/gutjnl-2014-308820 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nakatsu G, Li X, Zhou H et al (2015) Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 6:8727.  https://doi.org/10.1038/ncomms9727 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nguyen N-P, Warnow T, Pop M, White B (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. Npj Biofilms and Microbiomes 2:16004.  https://doi.org/10.1038/npjbiofilms.2016.4 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Noecker C, Eng A, Srinivasan S et al (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 1:e00013–e00015.  https://doi.org/10.1128/mSystems.00013-15 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nugent JL, McCoy AN, Addamo CJ et al (2014) Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J Proteome Res 13:1921–1929.  https://doi.org/10.1021/pr4009783 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Org E, Parks BW, Joo JWJ et al (2015) Genetic and environmental control of host-gut microbiota interactions. Genome Res 25:1558–1569.  https://doi.org/10.1101/gr.194118.115 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pan W (2001) Akaike’s information criterion in generalized estimating equations. Biometrics 57:120–125CrossRefGoogle Scholar
  63. Pedersen HK, Gudmundsdottir V, Nielsen HB et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381.  https://doi.org/10.1038/nature18646 CrossRefGoogle Scholar
  64. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909.  https://doi.org/10.1038/ng1847 CrossRefGoogle Scholar
  65. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575.  https://doi.org/10.1086/519795 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Qin Y, Wade PA (2018) Crosstalk between the microbiome and epigenome: messages from bugs. J Biochem (Tokyo) 163:105–112.  https://doi.org/10.1093/jb/mvx080 CrossRefGoogle Scholar
  67. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541.  https://doi.org/10.1038/nrg3000 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ramanan D, Bowcutt R, Lee SC et al (2016) Helminth infection promotes colonization resistance via type 2 immunity. Science 352:608–612.  https://doi.org/10.1126/science.aaf3229 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res 43:e47–e47.  https://doi.org/10.1093/nar/gkv007 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rodrigues RR, Shulzhenko N, Morgun A (2018) Transkingdom networks: a systems biology approach to identify causal members of host-microbiota interactions. Methods Mol Biol 1849:227–242.  https://doi.org/10.1007/978-1-4939-8728-3_15 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rothschild D, Weissbrod O, Barkan E et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215.  https://doi.org/10.1038/nature25973 CrossRefPubMedGoogle Scholar
  72. Schaefer J, Opgen-Rhein R, Strimmer and K (2015) GeneNet: Modeling and Inferring Gene Networks. R package version 1.2.13 https://CRAN.R-project.org/package=GeneNet. Accessed 28 Dec 2018
  73. Schwartz S, Friedberg I, Ivanov IV et al (2012) A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 13:r32.  https://doi.org/10.1186/gb-2012-13-4-r32 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358.  https://doi.org/10.1093/bioinformatics/bts163 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shen Y, Rahman M, Piccolo SR et al (2015) ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways. Bioinformatics 31:1745–1753.  https://doi.org/10.1093/bioinformatics/btv031 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shoaie S, Karlsson F, Mardinoglu A et al (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci Rep 3:2532.  https://doi.org/10.1038/srep02532 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Steinway SN, Biggs MB, Jr TPL et al (2015) Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput Biol 11:e1004338.  https://doi.org/10.1371/journal.pcbi.1004338 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tahara T, Hirata I, Nakano N et al (2017) Potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in ulcerative colitis. Oncotarget 8:61917–61926.  https://doi.org/10.18632/oncotarget.18716 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tian Y, Nichols RG, Cai J et al (2018) Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. J Nutr Biochem 54:28–34.  https://doi.org/10.1016/j.jnutbio.2017.10.011 CrossRefPubMedGoogle Scholar
  80. Trygg J, Wold S (2003) O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter. J Chemom 17:53–64.  https://doi.org/10.1002/cem.775 CrossRefGoogle Scholar
  81. Tsay J-CJ, Wu BG, Badri MH et al (2018) Airway microbiota is associated with up-regulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201710-2118OC
  82. Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810.  https://doi.org/10.1038/nature06244 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Turpin W, Espin-Garcia O, Xu W et al (2016) Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 48:1413–1417.  https://doi.org/10.1038/ng.3693 CrossRefPubMedGoogle Scholar
  84. Wang W, Baladandayuthapani V, Morris JS et al (2013) iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data. Bioinformatics 29:149–159.  https://doi.org/10.1093/bioinformatics/bts655 CrossRefPubMedGoogle Scholar
  85. Wang J, Thingholm LB, Skiecevičienė J et al (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48:1396–1406.  https://doi.org/10.1038/ng.3695 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wang J, Kurilshikov A, Radjabzadeh D et al (2018) Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome 6:101.  https://doi.org/10.1186/s40168-018-0479-3 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Weir TL, Manter DK, Sheflin AM et al (2013) Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 8:e70803.  https://doi.org/10.1371/journal.pone.0070803 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Xie H, Guo R, Zhong H et al (2016) Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst 3:572–584.e3.  https://doi.org/10.1016/j.cels.2016.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang X-S, Li J, Krautkramer KA et al (2018) Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. ELife Sci 7:1–37.  https://doi.org/10.7554/eLife.37816 CrossRefGoogle Scholar
  90. Zhao Y, Johnson WE (2018) Exploring host-microbe interactions in lung cancer. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201807-1225ED
  91. Zhao N, Chen J, Carroll IM et al (2015) Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test. Am J Hum Genet 96:797–807.  https://doi.org/10.1016/j.ajhg.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569.  https://doi.org/10.1126/science.aad3369 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824.  https://doi.org/10.1038/ng.2310 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zierer J, Jackson MA, Kastenmüller G et al (2018) The fecal metabolome as a functional readout of the gut microbiome. Nat Genet 50:790–795.  https://doi.org/10.1038/s41588-018-0135-7 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qing Wang
    • 1
    • 2
    • 3
  • Kaicen Wang
    • 1
    • 2
  • Wenrui Wu
    • 1
    • 2
  • Eleni Giannoulatou
    • 3
    • 4
  • Joshua W. K. Ho
    • 3
    • 4
    • 5
  • Lanjuan Li
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
  3. 3.Victor Chang Cardiac Research InstituteDarlinghurstAustralia
  4. 4.St Vincent’s Clinical SchoolUniversity of New South WalesSydneyAustralia
  5. 5.School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamChina

Personalised recommendations