Biophysical Reviews

, Volume 10, Issue 4, pp 1073–1085 | Cite as

Four and a half LIM domain protein signaling and cardiomyopathy

  • Yan Liang
  • William H. Bradford
  • Jing Zhang
  • Farah SheikhEmail author


Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the “stressed” cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs’ signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.


Cardiomyocyte Four and half LIM domain Hypertrophy Cardiomyopathy Signaling Sarcomere Transcription Stretch sensor 


Funding information

Y.L and J.Z are recipients of the American Heart Association Postdoctoral Fellowship. W.B is a recipient of the National Science Foundation graduate research fellowship. F.S. is supported by grants from NIH/NHLBI (HL09780) and Tobacco-Related Disease Research program (24RT-22).

Compliance with ethical standards

Conflicts of interest

Yan Liang declares that she has no conflict of interest. William H. Bradford declares that he has no conflict of interest. Jing Zhang declares that she has no conflict of interest. Farah Sheikh declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.




  1. Arimura T, Hayashi T, Matsumoto Y, Shibata H, Hiroi S, Nakamura T, Inagaki N, Hinohara K, Takahashi M, Manatsu SI, Sasaoka T, Izumi T, Bonne G, Schwartz K, Kimura A (2007) Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy. Biochem Biophys Res Commun 357(1):162–167. CrossRefPubMedGoogle Scholar
  2. Bovill E, Westaby S, Crisp A, Jacobs S, Shaw T (2009) Reduction of four-and-a-half LIM-protein 2 expression occurs in human left ventricular failure and leads to altered localization and reduced activity of metabolic enzymes. J Thorac Cardiovasc Surg 137(4):853–861. CrossRefPubMedGoogle Scholar
  3. Carrier L, Knoll R, Vignier N, Keller DI, Bausero P, Prudhon B, Isnard R, Ambroisine ML, Fiszman M, Ross J Jr, Schwartz K, Chien KR (2004) Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovasc Res 63(2):293–304. CrossRefPubMedGoogle Scholar
  4. Chan KK, Tsui SK, Lee SM, Luk SC, Liew CC, Fung KP, Waye MM, Lee CY (1998) Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart. Gene 210(2):345–350CrossRefPubMedGoogle Scholar
  5. Chen CL, Lin JL, Lai LP, Pan CH, Huang SK, Lin CS (2007) Altered expression of FHL1, CARP, TSC-22 and P311 provide insights into complex transcriptional regulation in pacing-induced atrial fibrillation. Biochim Biophys Acta 1772(3):317–329. CrossRefPubMedGoogle Scholar
  6. Christodoulou DC, Wakimoto H, Onoue K, Eminaga S, Gorham JM, DePalma SR, Herman DS, Teekakirikul P, Conner DA, McKean DM, Domenighetti AA, Aboukhalil A, Chang S, Srivastava G, McDonough B, De Jager PL, Chen J, Bulyk ML, Muehlschlegel JD, Seidman CE, Seidman JG (2014) 5'RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy. J Clin Invest 124(3):1364–1370. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chu PH, Ruiz-Lozano P, Zhou Q, Cai C, Chen J (2000) Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev 95(1–2):259–265CrossRefPubMedGoogle Scholar
  8. Cowling BS, Cottle DL, Wilding BR, D'Arcy CE, Mitchell CA, McGrath MJ (2011) Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: a comprehensive review of the clinical, histological and pathological features. Neuromuscul Disord 21(4):237–251. CrossRefPubMedGoogle Scholar
  9. D'Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW 2nd (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94(15):8121–8126CrossRefPubMedPubMedCentralGoogle Scholar
  10. D'Arcy C, Kanellakis V, Forbes R, Wilding B, McGrath M, Howell K, Ryan M, McLean C (2015) X-linked recessive distal myopathy with hypertrophic cardiomyopathy caused by a novel mutation in the FHL1 gene. J Child Neurol 30(9):1211–1217. CrossRefPubMedGoogle Scholar
  11. Dierck F, Kuhn C, Rohr C, Hille S, Braune J, Sossalla S, Molt S, van der Ven PFM, Furst DO, Frey N (2017) The novel cardiac z-disc protein CEFIP regulates cardiomyocyte hypertrophy by modulating calcineurin signaling. J Biol Chem 292(37):15180–15191. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Domenighetti AA, Chu PH, Wu T, Sheikh F, Gokhin DS, Guo LT, Cui Z, Peter AK, Christodoulou DC, Parfenov MG, Gorham JM, Li DY, Banerjee I, Lai X, Witzmann FA, Seidman CE, Seidman JG, Gomes AV, Shelton GD, Lieber RL, Chen J (2014) Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice. Hum Mol Genet 23(1):209–225. CrossRefPubMedGoogle Scholar
  13. Dorn GW 2nd, Brown JH (1999) Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc Med 9(1–2):26–34CrossRefPubMedGoogle Scholar
  14. Ehsan M, Jiang H, Thomson KL, Gehmlich K (2017) When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 38(3–4):303–316. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Friedrich FW, Wilding BR, Reischmann S, Crocini C, Lang P, Charron P, Muller OJ, McGrath MJ, Vollert I, Hansen A, Linke WA, Hengstenberg C, Bonne G, Morner S, Wichter T, Madeira H, Arbustini E, Eschenhagen T, Mitchell CA, Isnard R, Carrier L (2012) Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet 21(14):3237–3254. CrossRefPubMedGoogle Scholar
  16. Friedrich FW, Reischmann S, Schwalm A, Unger A, Ramanujam D, Munch J, Muller OJ, Hengstenberg C, Galve E, Charron P, Linke WA, Engelhardt S, Patten M, Richard P, van der Velden J, Eschenhagen T, Isnard R, Carrier L (2014) FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Res Cardiol 109(6):451. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG (1996) A mouse model of familial hypertrophic cardiomyopathy. Science 272(5262):731–734CrossRefPubMedGoogle Scholar
  18. Gossios TD, Lopes LR, Elliott PM (2013) Left ventricular hypertrophy caused by a novel nonsense mutation in FHL1. Eur J Med Genet 56(5):251–255. CrossRefPubMedGoogle Scholar
  19. Granzier HL, Radke MH, Peng J, Westermann D, Nelson OL, Rost K, King NM, Yu Q, Tschope C, McNabb M, Larson DF, Labeit S, Gotthardt M (2009) Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res 105(6):557–564. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hartmannova H, Kubanek M, Sramko M, Piherova L, Noskova L, Hodanova K, Stranecky V, Pristoupilova A, Sovova J, Marek T, Maluskova J, Ridzon P, Kautzner J, Hulkova H, Kmoch S (2013) Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. Circ Cardiovasc Genet 6(6):543–551. CrossRefPubMedGoogle Scholar
  21. Hojayev B, Rothermel BA, Gillette TG, Hill JA (2012) FHL2 binds calcineurin and represses pathological cardiac growth. Mol Cell Biol 32(19):4025–4034. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hwang DM, Dempsey AA, Wang RX, Rezvani M, Barrans JD, Dai KS, Wang HY, Ma H, Cukerman E, Liu YQ, Gu JR, Zhang JH, Tsui SK, Waye MM, Fung KP, Lee CY, Liew CC (1997) A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Circulation 96(12):4146–4203CrossRefPubMedGoogle Scholar
  23. Hwang DM, Dempsey AA, Lee CY, Liew CC (2000) Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66(1):1–14. CrossRefPubMedGoogle Scholar
  24. Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Nouchi T, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291(2):385–393. CrossRefPubMedGoogle Scholar
  25. Knoblauch H, Geier C, Adams S, Budde B, Rudolph A, Zacharias U, Schulz-Menger J, Spuler A, Yaou RB, Nurnberg P, Voit T, Bonne G, Spuler S (2010) Contractures and hypertrophic cardiomyopathy in a novel FHL1 mutation. Ann Neurol 67(1):136–140. CrossRefPubMedGoogle Scholar
  26. Kong Y, Shelton JM, Rothermel B, Li X, Richardson JA, Bassel-Duby R, Williams RS (2001) Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. Circulation 103(22):2731–2738CrossRefPubMedGoogle Scholar
  27. Krysiak J, Unger A, Beckendorf L, Hamdani N, von Frieling-Salewsky M, Redfield MM, Dos Remedios CG, Sheikh F, Gergs U, Boknik P, Linke WA (2018) Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nat Commun 9(1):262. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E (2002) Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115(Pt 24):4925–4936CrossRefPubMedGoogle Scholar
  29. Lee SM, Tsui SK, Chan KK, Garcia-Barcelo M, Waye MM, Fung KP, Liew CC, Lee CY (1998) Chromosomal mapping, tissue distribution and cDNA sequence of four-and-a-half LIM domain protein 1 (FHL1). Gene 216(1):163–170CrossRefPubMedGoogle Scholar
  30. LeWinter MM, Wu Y, Labeit S, Granzier H (2007) Cardiac titin: structure, functions and role in disease. Clin Chim Acta 375(1–2):1–9. CrossRefPubMedGoogle Scholar
  31. Lim DS, Roberts R, Marian AJ (2001) Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J Am Coll Cardiol 38(4):1175–1180CrossRefPubMedPubMedCentralGoogle Scholar
  32. Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146(3):631–644CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2009) A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15(1):75–83. CrossRefPubMedGoogle Scholar
  34. Matsumoto Y, Hayashi T, Inagaki N, Takahashi M, Hiroi S, Nakamura T, Arimura T, Nakamura K, Ashizawa N, Yasunami M, Ohe T, Yano K, Kimura A (2005) Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J Muscle Res Cell Motil 26(6–8):367–374. PubMedCrossRefGoogle Scholar
  35. Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE (2014) Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)∙extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. J Biol Chem 289(7):4219–4232. CrossRefPubMedGoogle Scholar
  36. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol.
  37. Ohno S (2016) The genetic background of arrhythmogenic right ventricular cardiomyopathy. J Arrhythm 32(5):398–403. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY, Taniguchi M, Ito M, Liao JK (2013) FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J 27(4):1439–1449. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pillers DA, Von Bergen NH (2016) Emery-Dreifuss muscular dystrophy: a test case for precision medicine. Appl Clin Genet 9:27–32. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Purcell NH, Darwis D, Bueno OF, Muller JM, Schule R, Molkentin JD (2004) Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol Cell Biol 24(3):1081–1095CrossRefPubMedPubMedCentralGoogle Scholar
  41. Raskin A, Lange S, Banares K, Lyon RC, Zieseniss A, Lee LK, Yamazaki KG, Granzier HL, Gregorio CC, McCulloch AD, Omens JH, Sheikh F (2012) A novel mechanism involving four-and-a-half LIM domain protein-1 and extracellular signal-regulated kinase-2 regulates titin phosphorylation and mechanics. J Biol Chem 287(35):29273–29284. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ruppert C, Deiss K, Herrmann S, Vidal M, Oezkur M, Gorski A, Weidemann F, Lohse MJ, Lorenz K (2013) Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc Natl Acad Sci U S A 110(18):7440–7445. CrossRefPubMedPubMedCentralGoogle Scholar
  43. San Roman I, Navarro M, Martinez F, Albert L, Polo L, Guardiola J, Garcia-Molina E, Munoz-Esparza C, Lopez-Ayala JM, Sabater-Molina M, Gimeno JR (2016) Unclassifiable arrhythmic cardiomyopathy associated with Emery-Dreifuss caused by a mutation in FHL1. Clin Genet 90(2):171–176. CrossRefPubMedGoogle Scholar
  44. Sanchez-Garcia I, Rabbitts TH (1994) The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet 10(9):315–320CrossRefPubMedGoogle Scholar
  45. Schessl J, Zou Y, McGrath MJ, Cowling BS, Maiti B, Chin SS, Sewry C, Battini R, Hu Y, Cottle DL, Rosenblatt M, Spruce L, Ganguly A, Kirschner J, Judkins AR, Golden JA, Goebel HH, Muntoni F, Flanigan KM, Mitchell CA, Bonnemann CG (2008) Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest 118(3):904–912. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ (2010) Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu Rev Med 61:233–253. CrossRefPubMedGoogle Scholar
  47. Shathasivam T, Kislinger T, Gramolini AO (2010) Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues. J Cell Mol Med 14(12):2702–2720. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sheikh F, Raskin A, Chu PH, Lange S, Domenighetti AA, Zheng M, Liang X, Zhang T, Yajima T, Gu Y, Dalton ND, Mahata SK, Dorn GW 2nd, Brown JH, Peterson KL, Omens JH, McCulloch AD, Chen J (2008) An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 118(12):3870–3880. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vignier N, Le Corvoisier P, Blard C, Sambin L, Azibani F, Schlossarek S, Delcayre C, Carrier L, Hittinger L, Su JB (2014) AT1 blockade abolishes left ventricular hypertrophy in heterozygous cMyBP-C null mice: role of FHL1. Fundam Clin Pharmacol 28(3):249–256. CrossRefPubMedGoogle Scholar
  50. von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS (2006) Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol 8(9):1011–1016.
  51. Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J, Chien KR, Offermanns S (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med 7(11):1236–1240. CrossRefPubMedGoogle Scholar
  52. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322(4):1178–1191. CrossRefPubMedGoogle Scholar
  53. Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90(11):1181–1188CrossRefPubMedGoogle Scholar
  54. Yang Z, Browning CF, Hallaq H, Yermalitskaya L, Esker J, Hall MR, Link AJ, Ham AJ, McGrath MJ, Mitchell CA, Murray KT (2008) Four and a half LIM protein 1: a partner for KCNA5 in human atrium. Cardiovasc Res 78(3):449–457. CrossRefPubMedGoogle Scholar
  55. Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP (2011) The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 121(6):2447–2456. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhang BQ, Si N, Liu DF (2015) Identification of a novel four and a half LIM domain 1 mutation in a Chinese male presented with hypertrophic cardiomyopathy and mild skeletal muscle hypertrophy. Chin Med J 128(16):2269–2270. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yan Liang
    • 1
  • William H. Bradford
    • 1
  • Jing Zhang
    • 1
  • Farah Sheikh
    • 1
    Email author
  1. 1.Department of MedicineUniversity of California-San DiegoLa JollaUSA

Personalised recommendations