Biophysical Reviews

, Volume 10, Issue 3, pp 901–910 | Cite as

Recent developments in biocatalysis in multiphasic ionic liquid reaction systems

  • Lars-Erik Meyer
  • Jan von Langermann
  • Udo KraglEmail author


Ionic liquids are well known and frequently used ‘designer solvents’ for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.


Ionic liquids Biphasic Enzyme Equilibrium Reaction engineering 


Compliance with ethical standards

Funding information

The authors received funding from the German Federal Ministry of Education and Research (BMBF—Bundesministerium für Bildung und Forschung; project number: 031A123) and German Research Foundation (Deutsche Forschungsgemeinschaft, grant numbers: 252186816 and 386850916).

Conflict of interest

Lars-Erik Meyer declares that he has no conflict of interest. Jan von Langermann declares that he has no conflict of interest. Udo Kragl declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Behr A, Johnen L, Daniel B (2011) A liquid immobilisation concept for enzymes by thermomorphic solvent systems. Green Chem 13:3168CrossRefGoogle Scholar
  2. Benedetto A, Ballone P (2016a) Room temperature ionic liquids interacting with bio-molecules: an overview of experimental and computational studies. Philos Mag 96:870Google Scholar
  3. Benedetto A, Ballone P (2016b) Room temperature ionic liquids meet biomolecules: a microscopic view of structure and dynamics. ACS Sustainable Chem Eng 4:392Google Scholar
  4. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185CrossRefPubMedGoogle Scholar
  5. Brenna E, Crotti M, Gatti FG, Manfredi A, Monti D, Parmeggiani F, Santangelo S, Zampieri D (2014) Enantioselective synthesis of (R)-2-arylpropanenitriles catalysed by ene-reductases in aqueous media and in biphasic ionic liquid-water systems. ChemCatChem 6:2425CrossRefGoogle Scholar
  6. Bridges NJ, Gutowski KE, Rogers RD (2007) Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chem 9:177CrossRefGoogle Scholar
  7. Busacca CA, Fandrick DR, Song JJ, Senanayake CH (2011) The growing impact of catalysis in the pharmaceutical industry. Adv Synth Catal 353:1825CrossRefGoogle Scholar
  8. Choi HJ, Uhm K-N, Kim H-K (2011) Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system. J Mol Catal B: Enzym 70:114CrossRefGoogle Scholar
  9. Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ionics 314:119CrossRefGoogle Scholar
  10. Dennewald D, Pitner W-R, Weuster-Botz D (2011) Recycling of the ionic liquid phase in process integrated biphasic whole-cell biocatalysis. Process Biochem 46:1132CrossRefGoogle Scholar
  11. Devi BLAP, Guo Z, Xu X (2011) Characterization of ionic liquid-based biocatalytic two-phase reaction system for production of biodiesel. AIChE J 57:1628Google Scholar
  12. de Diego T, Manjón A, Lozano P, Iborra JL (2011a) A recyclable enzymatic biodiesel production process in ionic liquids. Bioresour Technol 102:6336CrossRefPubMedGoogle Scholar
  13. de Diego T, Manjón A, Lozano P, Vaultier M, Iborra JL (2011b) An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chem 13:444CrossRefGoogle Scholar
  14. Eisenmenger MJ, Reyes-De-Corcuera JI (2010) Enhanced synthesis of isoamyl acetate using an ionic liquid–alcohol biphasic system at high hydrostatic pressure. J Mol Catal B: Enzym 67:36CrossRefGoogle Scholar
  15. Fischer F, Happe M, Emery J, Fornage A, Schütz R (2013) Enzymatic synthesis of 6- and 6′-O-linoleyl-α-d-maltose: From solvent-free to binary ionic liquid reaction media. J Mol Catal B Enzym 90:98CrossRefGoogle Scholar
  16. Freire MG, Cláudio AFM, Araújo JMM, Coutinho JAP, Marrucho IM, Canongia Lopes JN, Rebelo LPN (2012) Aqueous biphasic systems: A boost brought about by using ionic liquids. Chem Soc Rev 41:4966CrossRefPubMedGoogle Scholar
  17. Grollmisch, A.; Kragl, U.; Großeheilmann, J. SynOpen, submitted Google Scholar
  18. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632CrossRefPubMedGoogle Scholar
  19. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508CrossRefPubMedGoogle Scholar
  20. He D-M, Kaleem I, Qin S-Y, Dai D-Z, Liu G-Y, Li C (2010) Biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide catalyzed by β-d-glucuronidase with enhanced bond selectivity in an ionic liquid/buffer biphasic system. Process Biochem 45:1916CrossRefGoogle Scholar
  21. Hernández Fernández FJ, Pérez de los Ríos A, Quesada-Medina J, Sánchez-Segado S (2015) Ionic Liquids as Extractor Agents and Reaction Media in Ester Synthesis. ChemBioEng Rev 2:44Google Scholar
  22. Hou Q, Li W, Zhen M, Le Liu, Chen Y, Yang Q, Huang F, Zhang S, Ju M (2017) An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations. RSC Adv 7:47288Google Scholar
  23. Itoh T (2017) Ionic liquids as tool to improve enzymatic organic synthesis. Chem Rev 117:10567CrossRefPubMedGoogle Scholar
  24. Kaleem I, Rasool A, Lv B, Riaz N, Hassan JU, Manzoor R, Li C (2017) Immobilization of purified β-glucuronidase on ZnO nanoparticles for efficient biotransformation of glycyrrhizin in ionic liquid/buffer biphasic system. Chem Eng Sci 162:332CrossRefGoogle Scholar
  25. Koók L, Nemestóthy N, Bakonyi P, Göllei A, Rózsenberszki T, Takács P, Salekovics A, Kumar G, Bélafi-Bakó K (2017) On the efficiency of dual-chamber biocatalytic electrochemical cells applying membrane separators prepared with imidazolium-type ionic liquids containing [NTf2]- and [PF6]-anions. Chem Eng J 324:296CrossRefGoogle Scholar
  26. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565CrossRefPubMedGoogle Scholar
  27. López MS-P, Mecerreyes D, López-Cabarcos E, López-Ruiz B (2006) Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosens Bioelectron 21:2320CrossRefPubMedGoogle Scholar
  28. Lozano P, Bernal JM, Piamtongkam R, Fetzer D, Vaultier M (2010) One-phase ionic liquid reaction medium for biocatalytic production of biodiesel. ChemSusChem 3:1359CrossRefPubMedGoogle Scholar
  29. Lozano P, Bernal JM, Navarro A (2012) A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem 14:3026CrossRefGoogle Scholar
  30. Lozano P, Bernal J, Lajarin A, Romera D, Garcia-Verdugo E, Sanchez-Gomez G, Pucheault M, Vaultier M, Burguete M, Luis S (2014) A green approach for producing solvent-free anisyl acetate by enzymecatalyzed direct esterification in sponge-like ionic liquids under conventional and microwave heating. Curr Green Chem 1:145CrossRefGoogle Scholar
  31. Lozano P, Gomez C, Nicolas A, Polo R, Nieto S, Bernal JM, García-Verdugo E, Luis SV (2016) Clean enzymatic preparation of oxygenated biofuels from vegetable and waste cooking oils by using spongelike ionic liquids technology. ACS Sustainable Chem Eng 4:6125CrossRefGoogle Scholar
  32. Lozano P, Gomez C, Nieto S, Sanchez-Gomez G, García-Verdugo E, Luis SV (2017) Highly selective biocatalytic synthesis of monoacylglycerides in sponge-like ionic liquids. Green Chem 19:390CrossRefGoogle Scholar
  33. Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101:647Google Scholar
  34. Mai NL, Koo Y-M (2014) Enzymatic hydrolysis of penicillin and in situ product separation in thermally induced reversible phase-separation of ionic liquids/water mixture. Enzyme Microb Technol 63:34CrossRefPubMedGoogle Scholar
  35. Matsumoto M, Sugimoto T, Ishiguro Y, Yamaguchi H, Kondo K (2014) Effect of organic solvents and ionic liquids on resolution of 2-epoxyhexane by whole cells of Rhodotorula glutinis in a two-liquid phase system. J Chem Technol Biotechnol 89:522CrossRefGoogle Scholar
  36. Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295CrossRefGoogle Scholar
  37. Moniruzzaman M, Ino K, Kamiya N, Goto M (2012) Lipase incorporated ionic liquid polymers as active, stable and reusable biocatalysts. Org Biomol Chem 10:7707CrossRefPubMedGoogle Scholar
  38. Muñoz Solano D, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol 115:196CrossRefPubMedGoogle Scholar
  39. Nakashima K, Kamiya N, Koda D, Maruyama T, Goto M (2009) Enzyme encapsulation in microparticles composed of polymerized ionic liquids for highly active and reusable biocatalysts. Org Biomol Chem 7:2353CrossRefPubMedGoogle Scholar
  40. Naushad M, Alothman ZA, Khan AB, Ali M (2012) Effect of ionic liquid on activity, stability, and structure of enzymes: a review. Int J Biol Macromol 51:555CrossRefPubMedGoogle Scholar
  41. Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15:187CrossRefPubMedGoogle Scholar
  42. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl Catal A 373:1Google Scholar
  43. Oppermann S, Stein F, Kragl U (2011) Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis. Appl Microbiol Biotechnol 89:493CrossRefPubMedGoogle Scholar
  44. Patel RN (2011) Biocatalysis: Synthesis of key intermediates for development of pharmaceuticals. ACS Catal 1:1056CrossRefGoogle Scholar
  45. Pohar A, Žnidaršič-Plazl P, Plazl I (2012) Integrated system of a microbioreactor and a miniaturized continuous separator for enzyme catalyzed reactions. Chem Eng J 189-190:376CrossRefGoogle Scholar
  46. Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135:12480CrossRefPubMedGoogle Scholar
  47. Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed Engl 54:3351CrossRefPubMedPubMedCentralGoogle Scholar
  48. Stein F, Kragl U (2014) Biocatalytic reactions in ionic liquids. In: Plechkova NV, Seddon KR (eds) Ionic liquids further unCOILed, vol 5. John Wiley & Sons, Inc, Hoboken, pp 193–216Google Scholar
  49. Sandig B, Michalek L, Vlahovic S, Antonovici M, Hauer B, Buchmeiser MR (2015) A monolithic hybrid cellulose-2.5-acetate/polymer bioreactor for biocatalysis under continuous liquid-liquid conditions using a supported ionic liquid phase. Chem Eur J 21:15835CrossRefPubMedGoogle Scholar
  50. Schmideder A, Priebe X, Rubenbauer M, Hoffmann T, Huang F-C, Schwab W, Weuster-Botz D (2016) Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase. Bioprocess Biosyst Eng 39:1409CrossRefPubMedGoogle Scholar
  51. Sheldon, R. A. CHAPTER 2. Biocatalysis in ionic liquids. In Catalysis in ionic liquids; Hardacre, C., Parvulescu, V., Eds.; Catalysis series; Royal Society of Chemistry: Cambridge, 2014; pp 20–43Google Scholar
  52. Sheldon RA (2016) Biocatalysis and biomass conversion in alternative reaction media. Chem Eur J 22:12984CrossRefPubMedGoogle Scholar
  53. Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4:147CrossRefGoogle Scholar
  54. Singh R, Tiwari M, Singh R, Lee J-K (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232Google Scholar
  55. Sivapragasam M, Moniruzzaman M, Goto M (2016) Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications. Biotechnol J 11:1000CrossRefPubMedGoogle Scholar
  56. Song X-L, Ye S-Y, Xie R, Yin L, Shi X, Luo S-C (2011) Effects of bmim[PF6] treatments with different concentrations on microbial activity of Saccharomyces cerevisiae. Korean J Chem Eng 28:1902Google Scholar
  57. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal 3:2823CrossRefGoogle Scholar
  58. Temme H, Dethloff O, Pitner W-R, Fischer S, Scheurich R, Schulte M, Niemeyer B (2012) Identification of suitable ionic liquids for application in the enzymatic hydrolysis of rutin by an automated screening. Appl Microbiol Biotechnol 93:2301CrossRefPubMedGoogle Scholar
  59. Turner NJ (2003) Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol 21:474Google Scholar
  60. Voges M, Fischer C, Wolff D, Held C (2017) Influence of natural solutes and ionic liquids on the yield of enzyme-catalyzed reactions: Measurements and predictions. Org Process Res Dev 21:1059CrossRefGoogle Scholar
  61. Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology - the future of green chemistry? Green Chem 13:3007CrossRefGoogle Scholar
  62. Wohlgemuth R (2010) Biocatalysis--key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713Google Scholar
  63. Wood N, Ferguson JL, Gunaratne HQN, Seddon KR, Goodacre R, Stephens GM (2011) Screening ionic liquids for use in biotransformations with whole microbial cells. Green Chem 13:1843CrossRefGoogle Scholar
  64. Xu P, Du P-X, Zong M-H, Li N, Lou W-Y (2016) Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Sci Rep 6:26158CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12CrossRefPubMedGoogle Scholar
  66. Yu C-Y, Wei P, Li X-F, Zong M-H, Lou W-Y (2014) Using ionic liquid in a biphasic system to improve asymmetric hydrolysis of styrene oxide catalyzed by Cross-Linked Enzyme Aggregates (CLEAs) of Mung Bean epoxide hydrolases. Ind Eng Chem Res 53:7923CrossRefGoogle Scholar
  67. Zhang B-B, Cheng J, Lou W-Y, Wang P, Zong M-H (2012) Efficient anti-prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microb Cell Fact 11:108CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids-a review. J Chem Technol Biotechnol 85:891CrossRefGoogle Scholar
  69. Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88:3–12CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Industrial ChemistryUniversity of RostockRostockGermany
  2. 2.Faculty for Interdisciplinary Research, Department Life, Light and MatterUniversity of RostockRostockGermany

Personalised recommendations