Biophysical Reviews

, Volume 10, Issue 3, pp 915–925 | Cite as

Extraction and recovery processes for cynaropicrin from Cynara cardunculus L. using aqueous solutions of surface-active ionic liquids

  • Emanuelle L. P. de Faria
  • Melissa V. Gomes
  • Ana Filipa M. Cláudio
  • Carmen S. R. Freire
  • Armando J. D. Silvestre
  • Mara G. Freire


Due to the wide range of relevant biological activities and high commercial value of cynaropicrin, and aiming at developing cost-effective processes, aqueous solutions of ionic liquids (ILs) were investigated for the extraction and recovery of cynaropicrin from the leaves of Cynara cardunculus L. Both cationic (1-alkyl-3-methylimidazolium chloride) and anionic (cholinium carboxylate) surface-active ILs were investigated, as well as a wide range of conventional surfactants and molecular organic solvents, allowing us to conclude that aqueous solutions of cationic surface-active ILs display a better performance for the extraction of cynaropicrin. Operational conditions were optimized, leading to a cynaropicrin extraction yield of 3.73 wt%. The recycling of both the biomass and the solvent were further investigated to appraise the extraction media saturation and to achieve a higher cynaropicrin extraction yield (6.47 wt%). Finally, it was demonstrated that 65 wt% of the extracted cynaropicrin can be efficiently recovered by precipitation from the IL aqueous extract through the addition of water as anti-solvent, allowing us to put forward both the extraction and recovery processes of the target value-added compound from biomass followed by solvent recycling. This approach opens the door to the development of more sustainable processes using aqueous solutions of ILs instead of the volatile organic solvents commonly used in biomass processing.


Cynaropicrin Biomass Extraction Recovery Ionic liquids Aqueous solutions 



This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), and projects Multibiorefinery (POCI-01-0145-FEDER-016403) and Deep Biorefinery (PTDC/AGR-TEC/1191/2014), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. FCT/MEC is also acknowledged for the contract under Investigator FCT to C.S.R. Freire (IF/01407/2012). M.G. Freire acknowledges the European Research Council (ERC) for the starting grant ERC-2013-StG-337753. E.L.P. Faria acknowledges CNPq for the PhD grant (200908/2014-6). CEBAL and the project ValBioTecCynara are acknowledged for providing the cardoon leaves samples.

Compliance with ethical standards

Conflict of interest

Emanuelle L. P. de Faria declares that she has no conflict of interest. Melissa V. Gomes declares that she has no conflict of interest. Ana Filipa M. Cláudio declares that she has no conflict of interest. Carmen S. R. Freire declares that she has no conflict of interest. Armando J. D. Silvestre declares that he has no conflict of interest. Mara G. Freire declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12551_2017_387_MOESM1_ESM.pdf (203 kb)
ESM 1 Extraction yields of cynaropicrin from C. cardunculus L. leaves and respective standard deviation, CMC values of the studied surface-active ILs, and examples of the DAD-HPLC chromatograms (PDF 203 kb)


  1. Bai G, Lopes A, Bastos M (2008) Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J Chem Thermodyn 40(10):1509–1516Google Scholar
  2. Bernhard HO (1982) Quantitative determination of bitter sesquiterpenes from Cynara scolymus L. (artichoke) and Cynara cardunculus L. (Kardone) (Compositae). Pharm Acta Helv 57(7):179–180Google Scholar
  3. Bhattacharyya PR, Barua NC, Ghosh AC (1995) Cynaropicrin from Tricholepis glaberrima: a potential insect feeding deterrent compound. Ind Crop Prod 4(4):291–294CrossRefGoogle Scholar
  4. Bioniqus (2006) Extraction of Artemisinin using Ionic Liquids. Project Report 003–001/1. Bioniqus, YorkGoogle Scholar
  5. Bioniqus (2008) Extraction of Artemisinin using Ionic Liquids. Project Report 003–003/3. Bioniqus, YorkGoogle Scholar
  6. Bogdanov MG (2014) Ionic liquids as alternative solvents for extraction of natural products. In: Chemat F, Vian MA (eds) Green chemistry and sustainable technology. Springer, Heidelberg, pp 127–166Google Scholar
  7. Bogel-Lukasik R (2016) Ionic liquids in the biorefinery concept: challenges and perspectives. Royal Society of Chemistry, CambridgeGoogle Scholar
  8. Bubalo MC, Radošević K, Redovniković IR, Slivac I, Srček VG (2017) Toxicity mechanisms of ionic liquids. Arh Hig Rada Toksikol 68(3):171–179CrossRefPubMedGoogle Scholar
  9. ChemSpider – The free chemical database at (Accessed on June 2017)
  10. Cho JY, Baik KU, Jung JH, Park MH (2000) In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur J Pharmacol 398(3):399–407CrossRefPubMedGoogle Scholar
  11. Cho JY, Kim AR, Jung JH, Chun T, Rhee MH, Yoo ES (2004) Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur J Pharmacol 492(2–3):85–94CrossRefPubMedGoogle Scholar
  12. Cao X, Xuemin Y, Yanbin L, Yi Y, Weimin M (2009) Ionic liquid-based ultrasonic-assisted extraction of Piperine from white pepper. Anal Chim Acta 640(1–2):47–51CrossRefPubMedGoogle Scholar
  13. Chowdhury SA, Vijayaraghavan R, MacFarlane DR (2010) Distillable ionic liquid extraction of tannins from plant materials. Green Chem 12(6):1023–1028CrossRefGoogle Scholar
  14. Cláudio AFM, Ferreira AM, Freire MG, Coutinho JAP (2013) Enhanced extraction of caffeine from guarana seeds using aqueous solutions of ionic liquids. Green Chem 15(7):2002–2010CrossRefGoogle Scholar
  15. Cláudio AFM, Neves MN, Shimizi K, Lopes JNC, Freire MG, Coutinho JAP (2015) The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chem 17(7):3948–3963CrossRefPubMedPubMedCentralGoogle Scholar
  16. da Ponte MN (2017) Supercritical fluids in natural product and biomass processing – an introduction. In: Lukasik RM (ed) High pressure Technologies in Biomass Conversion. Royal Society of Chemistry, Cambridge, pp 1–8Google Scholar
  17. El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313(1):296–304CrossRefPubMedGoogle Scholar
  18. Emendörfer F, Emendörfer F, Bellato F, Noldin VF, Cechinel-Filho V, Yunes RA, Delle Monache F, Cardozo AM (2005) Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum. Biol Pharm Bull 28(5):902–904CrossRefPubMedGoogle Scholar
  19. Faria ELP, Shabudin SV, Claúdio AFM, Valega M, Domingues FMJ, Freire CSR, Silvestre AJD, Freire MG (2017) Aqueous solutions of surface-active ionic liquids: remarkable alternative solvents to improve the solubility of triterpenic acids and their extraction from biomass. ACS Sustain Chem Eng 5(8):7344–7351CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fernandes MC, Ferro MD, Paulino AFC, Mendes JAS, Gravitis J, Evtuguin DV, Xavier AMRB (2015) Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol 186:309–315CrossRefPubMedGoogle Scholar
  21. Fernandez J, Curt MD, Aguado PL (2006) Industrial applications of Cynara Cardunculus L. for energy and other uses. Ind Crop Prod 24(3):222–229CrossRefGoogle Scholar
  22. Ferreira R, Garcia H, Sousa A, Freire CSR, Silvestre AJD, Rebelo LPN, Pereira CS (2012) Suberin isolation from cork using ionic liquids: characterisation of ensuing products. New J Chem 36(10):2014–2024CrossRefGoogle Scholar
  23. Ferreira R, Garcia H, Sousa A, Freire CSR, Silvestre AJD, Rebelo LPN, Pereira CS (2013) Isolation of suberin from birch outer bark and cork using ionic liquids: a new source of macromonomers. Ind Crop Prod 44:520–527CrossRefGoogle Scholar
  24. Ferreira AM, Morais ES, Leite AC, Mohamadou A, Holmbom B, Holmbom T, Neves BM, Coutinho JAP, Freire MG, Silvestre AJD (2017) Enhanced extraction and biological activity of 7-Hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chem 19(11):2626–2635CrossRefGoogle Scholar
  25. Fujita K, MacFarlane DR, Forsyth M, Yoshizawa-Fujita M, Murata K, Nakamura N, Ohno H (2007) Solubility and stability of Cytochrome c in hydrated ionic liquids: effect of Oxo acid residues and Kosmotropicity. Biomacromolecules 8(7):2080–2086CrossRefPubMedGoogle Scholar
  26. Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leitão MC, Gunaratne HQN, Seddon KR, Rebelo LPN, Pereira CS (2010) Dissolution of Cork biopolymers in biocompatible ionic liquids. Green Chem 12(3):367–369CrossRefGoogle Scholar
  27. Gatto A, De Paola D, Bagnoli F, Vendramin GG, Sonnante G (2013) Population structure of Cynara cardunculus Complex and the origin of the conspecific crops artichoke and cardoon. Ann Bot 112(5):855–865CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gominho J, Lourenço A, Curt M, Fernández J, Pereira H (2009) Characterization of hairs and pappi from Cynara cardunculus Capitula and their suitability for paper production. Ind Crop Prod 29(1):116–125CrossRefGoogle Scholar
  29. Huang F, Berton P, Lu C, Siraj N, Wang C, Magut PK, Warner IM (2014) Surfactant-based ionic liquids for extraction of phenolic compounds combined with rapid quantification using capillary electrophoresis. Electrophoresis 35(17):2463–2469CrossRefPubMedGoogle Scholar
  30. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314(1):236–241CrossRefPubMedGoogle Scholar
  31. Kaminskii IP, Krasnov EA, Kadyrova TV, Ivasenko SA, Rakhimova BB, Adekenov SM (2011) Quantitative HPLC determination of cynaropicrin in Centaurea scabiosa dry extract. Pharm Chem J 45(9):560–563CrossRefGoogle Scholar
  32. Koubaa I, Damak M, McKillop A, Simmonds M (1999) Constituents of Cynara cardunculus. Fitoterapia 70(2):212–213CrossRefGoogle Scholar
  33. Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4(1):18CrossRefGoogle Scholar
  34. Lin X, Wang Y, Liu X, Huang S, Zeng Q (2012) ILs-based microwave-assisted extraction coupled with aqueous two-phase for the extraction of useful compounds from Chinese medicine. Analyst 137(17):4076–4085CrossRefPubMedGoogle Scholar
  35. Łuczak J, Hupka J, Thöming J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloid Surf A 329(3):125–133CrossRefGoogle Scholar
  36. Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 336(1):111–116CrossRefPubMedGoogle Scholar
  37. Miskolczy Z, Sebök-Nagy K, Biczók L, Göktürk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400(4–6):296–300CrossRefGoogle Scholar
  38. Ohno H, Fujita K, Kohno Y (2015) Is Seven the Minimum Number of Water Molecules per Ion Pair for Assured Biological Activity in Ionic Liquid–water Mixtures? Phys Chem Chem Phys 17(22):14454–14460CrossRefPubMedGoogle Scholar
  39. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain Chem Eng 2(5):1063–1071CrossRefGoogle Scholar
  40. Passos H, Freire MG, Coutinho JAP (2014) Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16(12):4786–4815CrossRefPubMedPubMedCentralGoogle Scholar
  41. Qi XL, Peng X, Huang YY, Li L, Wei ZF, Zu YG, Fu YJ (2015) Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Ind Crop Prod 70:142–148CrossRefGoogle Scholar
  42. Ramos PAB, Guerra AR, Guerreiro O, Freire CSR, Silva AMS, Duarte MF, Silvestre AJD (2013) Lipophilic extracts of cynara cardunculus L. Var. altilis (DC): a source of valuable bioactive terpenic compounds. J Agric Food Chem 61(35):8420–8429CrossRefPubMedGoogle Scholar
  43. Ramos PAB, Santos SAO, Guerra AR, Guerreiro O, Freire CSR, Rocha SM, Duarte MF, Silvestre AJD (2014) Phenolic composition and antioxidant activity of different morphological parts of Cynara Cardunculus L. Var. Altilis (DC). Ind Crop Prod 61:460–471CrossRefGoogle Scholar
  44. Rengstl D, Kraus B, Van Vorst M, Elliott GD, Kunz W (2014) Effect of choline carboxylate ionic liquids on biological membranes. Colloid Surf B 123:575–581CrossRefGoogle Scholar
  45. Ressmann AK, Gaertner P, Bica K (2011) From plant to drug: ionic liquids for the reactive dissolution of biomass. Green Chem 13(6):1442–1447CrossRefGoogle Scholar
  46. Ressmann AK, Zirbs R, Pressler M, Gaertner P, Bica K (2013) Surface-active ionic liquids for micellar extraction of piperine from black pepper. Z Naturforsch A 68(10):1129–1137CrossRefGoogle Scholar
  47. Sintra TE, Luís A, Rocha SN, Lobo Ferreira AIMC, Gonçalves F, Santos LMNBF, Neves BM, Freire MG, Ventura SPM, Coutinho JAP (2015) Enhancing the antioxidant characteristics of Phenolic acids by their conversion into Cholinium salts. ACS Sustain Chem Eng 3(10):2558–2565CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smirnova NA, Safonova EA (2012) Micellization in solutions of ionic liquids. Colloid J 74(2):254–265CrossRefGoogle Scholar
  49. Sovová H, Opletal L, Sajfrtová M, Bártlová M (2008) Supercritical fluid extraction of cynaropicrin and 20-hydroxyecdysone from Leuzea carthamoides DC. J Sep Sci 31(8):1387–1392CrossRefPubMedGoogle Scholar
  50. Tang B, Bi W, Zhang H, Row KH (2014) Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive Terpenoids in Chamaecyparis obtusa leaves. Chromatographia 77(3):373–377CrossRefGoogle Scholar
  51. Trendafilova A, Chanev C, Todorova M (2010) Ultrasound-assisted extraction of alantolactone and isoalantolactone from Inula helenium roots. Pharmacogn Mag 6(23):234–237CrossRefPubMedPubMedCentralGoogle Scholar
  52. Usuki T, Yasuda N, Yoshizawa-Fujita M, Rikukawa M (2011) Extraction and isolation of Shikimic acid from ginkgo Biloba leaves utilizing an ionic liquid that dissolves cellulose. Chem Commun 47(38):10560–10562CrossRefGoogle Scholar
  53. Ventura SPM, Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev 117(10):6984–7052CrossRefPubMedPubMedCentralGoogle Scholar
  54. Verissimo P, Esteves C, Faro C, Pires E (1995) The vegetable rennet of Cynara Cardunculus L. contains two proteinases with chymosin and pepsin-like specificities. Biotechnol Lett 17(6):621–626CrossRefGoogle Scholar
  55. Vieira FA, Guilherme RJR, Neves MC, Rego A, Abreu MH, Coutinho JAP, Ventura SPM (2017) Recovery of carotenoids from brown seaweeds using aqueous solutions of surface-active ionic liquids and anionic surfactants. Sep Purif Technol.
  56. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41(4):1519–1537CrossRefPubMedGoogle Scholar
  57. Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109(1):75–123CrossRefGoogle Scholar
  58. Wu K, Zhang Q, Liu Q, Tang F, Long Y, Yao S (2009) Ionic liquid surfactant-mediated ultrasonic-assisted extraction coupled to HPLC: application to analysis of tanshinones in Salvia miltiorrhiza bunge. J Sep Sci 32(23–24):4220–4226CrossRefPubMedGoogle Scholar
  59. Yu W, Liu Z, Li Q, Zhang H, Yu Y (2015) Determination of Sudan I-IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography. Food Chem 173:815–820CrossRefPubMedGoogle Scholar
  60. Zhou Y, Wu D, Cai P, Cheng G, Huang C, Pan Y (2015) Special effect of ionic liquids on the extraction of flavonoid glycosides from Chrysanthemum morifolium Ramat by microwave assistance. Molecules 20(5):7683–7699CrossRefPubMedGoogle Scholar
  61. Zimmermann S, Adams M, Julianti T, Hata-Uribe Y, Brun R, Hamburger M (2010) HPLC- based activity profiling for new antiparasitic leads: in vitro and in vivo antitrypanosomal activity of cynaropicrin. In: 58th international congress and annual meeting of the Society for Medicinal Plant and Natural Product Research, Berlin, pp 76Google Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.CICECO – Aveiro Institute of Materials, Chemistry DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations