Advertisement

Biophysical Reviews

, Volume 10, Issue 2, pp 209–218 | Cite as

Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology

  • Eiichi Mizohata
  • Takanori Nakane
  • Yohta Fukuda
  • Eriko Nango
  • So Iwata
Review

Abstract

X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200–50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50–1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.

Keywords

De novo phasing Membrane protein Detergent Bioinorganic chemistry Structure–function relationship Time-resolved analysis 

Notes

Acknowledgements

We appreciate all the members of the SACLA-SFX Project, especially Dr. Keitaro Yamashita for the valuable comments on the manuscript. This work was supported by the X-ray Free Electron Laser Priority Strategy Program of the Ministry of Education, Culture, Sports, Science and Technology in Japan and partially by the Strategic Basic Research Programs of the Japan Science and Technology Agency.

Compliance with ethical standards

Conflict of interest

Eiichi Mizohata declares that he has no conflict of interest. Takanori Nakane declares that he has no conflict of interest. Yohta Fukuda declares that he has no conflict of interest. Eriko Nango declares that she has no conflict of interest. So Iwata declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Antonyuk SV, Hough MA (2011) Monitoring and validating active site redox states in protein crystals. Biochim Biophys Acta 1814(6):778–784.  https://doi.org/10.1016/j.bbapap.2010.12.017 CrossRefPubMedGoogle Scholar
  2. Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS (2005) Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Proc Natl Acad Sci U S A 102(34):12041–12046.  https://doi.org/10.1073/pnas.0504207102 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barends TR, Foucar L, Botha S, Doak RB, Shoeman RL, Nass K et al (2014) De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505(7482):244–247.  https://doi.org/10.1038/nature12773 CrossRefPubMedGoogle Scholar
  4. Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A, Botha S et al (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350(6259):445–450.  https://doi.org/10.1126/science.aac5492 CrossRefPubMedGoogle Scholar
  5. Barty A, Caleman C, Aquila A, Timneanu N, Lomb L, White TA et al (2012) Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat Photonics 6:35–40.  https://doi.org/10.1038/nphoton.2011.297 CrossRefPubMedGoogle Scholar
  6. Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA et al (2016) Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Sci Adv 2(9):e1600292.  https://doi.org/10.1126/sciadv.1600292 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berglund GI, Carlsson GH, Smith AT, Szöke H, Henriksen A, Hajdu J (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417(6887):463–468.  https://doi.org/10.1038/417463a CrossRefPubMedGoogle Scholar
  8. Borshchevskiy VI, Round ES, Popov AN, Büldt G, Gordeliy VI (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J Mol Biol 409(5):813–825.  https://doi.org/10.1016/j.jmb.2011.04.038 CrossRefPubMedGoogle Scholar
  9. Borshchevskiy V, Round E, Erofeev I, Weik M, Ishchenko A, Gushchin I et al (2014) Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr D Biol Crystallogr 70:2675–2685.  https://doi.org/10.1107/S1399004714017295 CrossRefPubMedGoogle Scholar
  10. Boulanger MJ, Murphy MEP (2001) Alternate substrate binding modes to two mutant (D98N and H255N) forms of nitrite reductase from Alcaligenes faecalis S-6: structural model of a transient catalytic intermediate. Biochemistry 40(31):9132–9141.  https://doi.org/10.1021/bi0107400 CrossRefPubMedGoogle Scholar
  11. Boulanger MJ, Kukimoto M, Nishiyama M, Horinouchi S, Murphy MEP (2000) Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase. J Biol Chem 275(31):23957–23964.  https://doi.org/10.1074/jbc.M001859200 CrossRefPubMedGoogle Scholar
  12. Brenner S, Heyes DJ, Hay S, Hough MA, Eady RR, Hasnain SS, Scrutton NS (2009) Demonstration of proton-coupled electron transfer in the copper-containing nitrite reductases. J Biol Chem 284(38):25973–25983.  https://doi.org/10.1074/jbc.M109.012245 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332):73–77.  https://doi.org/10.1038/nature09750 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Colletier JP, Sawaya MR, Gingery M, Rodriguez JA, Cascio D, Brewster AS et al (2016) De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature 539(7627):43–47.  https://doi.org/10.1038/nature19825 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62(Pt 9):1002–1011.  https://doi.org/10.1107/S0907444906022116 CrossRefPubMedGoogle Scholar
  16. Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A et al (2014) Trajectories of the ribosome as a Brownian nanomachine. Proc Natl Acad Sci U S A 111(49):17492–17497.  https://doi.org/10.1073/pnas.1419276111 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dashti A, Hail DB, Mashayekhi G, Schwander P, des Georges A, Frank J et al (2017) Conformational dynamics and energy landscapes of ligand binding in RyR1. bioRxiv 167080.  https://doi.org/10.1101/167080
  18. Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (2009) Hidden alternative structures of proline isomerase essential for catalysis. Nature 462(7273):669–673.  https://doi.org/10.1038/nature08615 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108(39):16247–16252.  https://doi.org/10.1073/pnas.1111325108 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fukuda Y, Inoue T (2015) High-temperature and high-resolution crystallography of thermostable copper nitrite reductase. Chem Commun (Camb) 51(30):6532–6535.  https://doi.org/10.1039/c4cc09553g CrossRefGoogle Scholar
  21. Fukuda Y, Tse KM, Nakane T, Nakatsu T, Suzuki M, Sugahara M et al (2016a) Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc Natl Acad Sci U S A 113(11):2928–2933.  https://doi.org/10.1073/pnas.1517770113 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fukuda Y, Tse KM, Suzuki M, Diederichs K, Hirata K, Nakane T et al (2016b) Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography. J Biochem 159(5):527–538.  https://doi.org/10.1093/jb/mvv133 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ginn HM, Brewster AS, Hattne J, Evans G, Wagner A, Grimes JM et al (2015a) A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallogr D Biol Crystallogr 71(Pt 6):1400–1410.  https://doi.org/10.1107/S1399004715006902 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ginn HM, Messerschmidt M, Ji X, Zhang H, Axford D, Gildea RJ et al (2015b) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435.  https://doi.org/10.1038/ncomms7435 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Haupts U, Tittor J, Oesterhelt D (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28:367–399.  https://doi.org/10.1146/annurev.biophys.28.1.367 CrossRefPubMedGoogle Scholar
  26. Horrell S, Antonyuk SV, Eady RR, Hasnain SS, Hough MA, Strange RW (2016) Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCrJ 3(Pt 4):271–281.  https://doi.org/10.1107/S205225251600823X CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hough MA, Antonyuk SV, Strange RW, Eady RR, Hasnain SS (2008) Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase. J Mol Biol 378(2):353–361.  https://doi.org/10.1016/j.jmb.2008.01.097 CrossRefPubMedGoogle Scholar
  28. Hunter MS, Yoon CH, DeMirci H, Sierra RG, Dao EH, Ahmadi R et al (2016) Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nat Commun 7:13388.  https://doi.org/10.1038/ncomms13388 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T et al (2012) A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat Photonics 6(8):540–544.  https://doi.org/10.1038/nphoton.2012.141 CrossRefGoogle Scholar
  30. Johansson LC, Arnlund D, Katona G, White TA, Barty A, DePonte DP et al (2013) Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat Commun 4:2911.  https://doi.org/10.1038/ncomms3911 PubMedPubMedCentralGoogle Scholar
  31. Kabsch W (2014) Processing of X-ray snapshots from crystals in random orientations. Acta Crystallogr D Biol Crystallogr 70(Pt 8):2204–2216CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kataoka K, Furusawa H, Takagi K, Yamaguchi K, Suzuki S (2000) Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitrite reductase. J Biochem 127(2):345–350CrossRefPubMedGoogle Scholar
  33. Keedy DA, van den Bedem H, Sivak DA, Petsko GA, Ringe D, Wilson MA et al (2014) Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 22(6):899–910.  https://doi.org/10.1016/j.str.2014.04.016 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kern J, Alonso-Mori R, Hellmich J, Tran R, Hattne J, Laksmono H et al (2012) Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc Natl Acad Sci U S A 109(25):9721–9726.  https://doi.org/10.1073/pnas.1204598109 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kern J, Tran R, Alonso-Mori R, Koroidov S, Echols N, Hattne J et al (2014) Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun 5:4371.  https://doi.org/10.1038/ncomms5371 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kirian RA, White TA, Holton JM, Chapman HN, Fromme P, Barty A et al (2011) Structure–factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr A 67(Pt 2):131–140.  https://doi.org/10.1107/S0108767310050981 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kobayashi K, Tagawa S, Deligeer, Suzuki S (1999) The pH-dependent changes of intramolecular electron transfer on copper-containing nitrite reductase. J Biochem 126(2):408–412CrossRefPubMedGoogle Scholar
  38. Kubo M, Nango E, Tono K, Kimura T, Owada S, Song CY et al (2017) Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA. J Synchrotron Radiat 24:1086–1091.  https://doi.org/10.1107/S160057751701030x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513(7517):261–265.  https://doi.org/10.1038/nature13453 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kupitz C, Olmos JL Jr, Holl M, Tremblay L, Pande K, Pandey S et al (2017) Structural enzymology using X-ray free electron lasers. Struct Dyn 4(4):044003.  https://doi.org/10.1063/1.4972069 CrossRefPubMedGoogle Scholar
  41. Leferink NGH, Han C, Antonyuk SV, Heyes DJ, Rigby SEJ, Hough MA et al (2011) Proton-coupled electron transfer in the catalytic cycle of Alcaligenes xylosoxidans copper-dependent nitrite Reductase. Biochemistry 50(19):4121–4131.  https://doi.org/10.1021/bi200246f CrossRefPubMedGoogle Scholar
  42. Li Y, Hodak M, Bernholc J (2015) Enzymatic mechanism of copper-containing nitrite reductase. Biochemistry 54(5):1233–1242.  https://doi.org/10.1021/bi5007767 CrossRefPubMedGoogle Scholar
  43. Liu Q, Hendrickson WA (2015) Crystallographic phasing from weak anomalous signals. Curr Opin Struct Biol 34:99–107.  https://doi.org/10.1016/j.sbi.2015.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Liu W, Wacker D, Gati C, Han GW, James D, Wang D et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342(6165):1521–1524.  https://doi.org/10.1126/science.1244142 CrossRefPubMedPubMedCentralGoogle Scholar
  45. MacKay DJC (1998) Introduction to monte carlo methods. NATO ASI Ser D Behav Soc Sci 89:175–204Google Scholar
  46. Mafuné F, Miyajima K, Tono K, Takeda Y, Kohno JY, Miyauchi N et al (2016) Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr D Struct Biol 72:520–523.  https://doi.org/10.1107/S2059798316001480 CrossRefPubMedGoogle Scholar
  47. Maia FRNC (2012) The coherent X-ray imaging data bank. Nat Methods 9(9):854–855.  https://doi.org/10.1038/nmeth.2110 CrossRefPubMedGoogle Scholar
  48. Matsui Y, Sakai K, Murakami M, Shiro Y, Adachi S, Okumura H et al (2002) Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324(3):469–481.  https://doi.org/10.1016/S0022-2836(02)01110-5 CrossRefPubMedGoogle Scholar
  49. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI et al (2016) Breaking Cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707.  https://doi.org/10.1016/j.cell.2016.05.040 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Moffat K (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem Rev 101(6):1569–1581.  https://doi.org/10.1021/cr990039q CrossRefPubMedGoogle Scholar
  51. Nakane T, Song C, Suzuki M, Nango E, Kobayashi J, Masuda T et al (2015) Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 71(Pt 12):2519–2525.  https://doi.org/10.1107/S139900471501857X CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nakane T, Hanashima S, Suzuki M, Saiki H, Hayashi T, Kakinouchi K et al (2016a) Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. Proc Natl Acad Sci U S A 113(46):13039–13044.  https://doi.org/10.1073/pnas.1602531113 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nakane T, Joti Y, Tono K, Yabashi M, Nango E, Iwata S et al (2016b) Data processing pipeline for serial femtosecond crystallography at SACLA. J Appl Crystallogr 49:1035–1041.  https://doi.org/10.1107/S1600576716005720 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T et al (2016) A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354(6319):1552–1557.  https://doi.org/10.1126/science.aah3497 CrossRefPubMedGoogle Scholar
  55. Nass K, Meinhart A, Barends TR, Foucar L, Gorel A, Aquila A et al (2016) Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3(Pt 3):180–191.  https://doi.org/10.1107/S2052252516002980 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797):752–757.  https://doi.org/10.1038/35021099 CrossRefPubMedGoogle Scholar
  57. Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta Biomembr 1565(2):144–167.  https://doi.org/10.1016/S0005-2736(02)00566-7 CrossRefGoogle Scholar
  58. Pande K, Hutchison CDM, Groenhof G, Aquila A, Robinson JS, Tenboer J et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352(6286):725–729.  https://doi.org/10.1126/science.aad5081 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sauter NK (2015) XFEL diffraction: developing processing methods to optimize data quality. J Synchrotron Radiat 22(Pt 2):239–248.  https://doi.org/10.1107/S1600577514028203 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Scapin G (2013) Molecular replacement then and now. Acta Crystallogr D Biol Crystallogr 69(Pt 11):2266–2275CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE et al (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287(5458):1615–1622CrossRefPubMedGoogle Scholar
  62. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66(Pt 4):479–485.  https://doi.org/10.1107/S0907444909038360 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S, Swain M et al (2017) Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541(7636):242–246.  https://doi.org/10.1038/nature20599 CrossRefPubMedGoogle Scholar
  64. Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T et al (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543(7643):131–135.  https://doi.org/10.1038/nature21400 CrossRefPubMedGoogle Scholar
  65. Sugahara M, Mizohata E, Nango E, Suzuki M, Tanaka T, Masuda T et al (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12(1):61–63.  https://doi.org/10.1038/nmeth.3172 CrossRefPubMedGoogle Scholar
  66. Sugahara M, Nakane T, Masuda T, Suzuki M, Inoue S, Song CY et al (2017) Hydroxyethyl cellulose matrix applied to serial crystallography. Sci Rep 7:703.  https://doi.org/10.1038/s41598-017-00761-0 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Taylor GL (2010) Introduction to phasing. Acta Crystallogr D Biol Crystallogr 66(Pt 4):325–338CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D, Frank M et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346(6214):1242–1246.  https://doi.org/10.1126/science.1259357 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tocheva EI, Rosell FI, Mauk AG, Murphy ME (2004) Side-on copper-nitrosyl coordination by nitrite reductase. Science 304(5672):867–870.  https://doi.org/10.1126/science.1095109 CrossRefPubMedGoogle Scholar
  70. Tono K, Nango E, Sugahara M, Song C, Park J, Tanaka T et al (2015) Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser. J Synchrotron Radiat 22(Pt 3):532–537.  https://doi.org/10.1107/S1600577515004464 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Uervirojnangkoorn M, Zeldin OB, Lyubimov AY, Hattne J, Brewster AS, Sauter NK et al (2015) Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. Elife 4:e05421.  https://doi.org/10.7554/eLife.05421 CrossRefPubMedCentralGoogle Scholar
  72. Weierstall U, James D, Wang C, White TA, Wang D, Liu W et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309.  https://doi.org/10.1038/ncomms4309 CrossRefPubMedPubMedCentralGoogle Scholar
  73. White TA, Kirian RA, Martin AV, Aquila A, Nass K, Barty A et al (2012) CrystFEL: a software suite for snapshot serial crystallography. J Appl Crystallogr 45:335–341.  https://doi.org/10.1107/S0021889812002312 CrossRefGoogle Scholar
  74. White TA, Mariani V, Brehm W, Yefanov O, Barty A, Beyerlein KR et al (2016) Recent developments in CrystFEL. J Appl Crystallogr 49(Pt 2):680–689.  https://doi.org/10.1107/S1600576716004751 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wickstrand C, Dods R, Royant A, Neutze R (2015) Bacteriorhodopsin: would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 1850(3):536–553.  https://doi.org/10.1016/j.bbagen.2014.05.021 CrossRefGoogle Scholar
  76. Wijma HJ, Jeuken LJC, Verbeet MP, Armstrong FA, Canters GW (2006) A random-sequential mechanism for nitrite binding and active site reduction in copper-containing nitrite reductase. J Biol Chem 281(24):16340–16346.  https://doi.org/10.1074/jbc.M601610200 CrossRefPubMedGoogle Scholar
  77. Yamashita K, Pan D, Okuda T, Sugahara M, Kodan A, Yamaguchi T et al (2015) An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Sci Rep 5:14017.  https://doi.org/10.1038/srep14017 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yamashita K, Kuwabara N, Nakane T, Murai T, Mizohata E, Sugahara M et al (2017) Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography. IUCrJ 4:639–647.  https://doi.org/10.1107/S2052252517008557 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Eiichi Mizohata
    • 1
    • 2
  • Takanori Nakane
    • 3
    • 4
  • Yohta Fukuda
    • 1
  • Eriko Nango
    • 5
    • 6
  • So Iwata
    • 5
    • 6
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Japan Science and Technology Agency, PRESTOKawaguchiJapan
  3. 3.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  4. 4.MRC Laboratory of Molecular BiologyCambridgeUK
  5. 5.RIKEN SPring-8 CenterSayo-gunJapan
  6. 6.Department of Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations