Advertisement

Biophysical Reviews

, Volume 10, Issue 2, pp 219–227 | Cite as

“Just a spoonful of sugar...”: import of sialic acid across bacterial cell membranes

  • Rachel A. North
  • Christopher R. Horne
  • James S. Davies
  • Daniela M. Remus
  • Andrew C. Muscroft-Taylor
  • Parveen Goyal
  • Weixiao Yuan Wahlgren
  • S. Ramaswamy
  • Rosmarie Friemann
  • Renwick C. J. Dobson
Review

Abstract

Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.

Keywords

Sialic acid ABC transporter TRAP transporter Sodium solute symporters NanT Porins 

Notes

Acknowledgements

R.C.J.D. and R.A.N. acknowledge the following for funding support, in part: (1) the New Zealand Royal Society Marsden Fund (15-UOC032) and (2) the Biomolecular Interaction Centre, University of Canterbury. The project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 608743 (to R.F.). This work was also supported by grants from the Swedish Research Council (2011-5790 to R.F.), the Swedish Research Council Formas (2010-1759 to R.F. and 221-2013-730 to W.Y.W.), the Swedish Governmental Agency for Innovation Systems (VINNOVA) (2013-04655 and 2017-00180 to R.F.), Carl Tryggers Stiftelse för Vetenskaplig Forskning (11:147 to R.F.), EMBO (1163-2014 to P.G. and 584-2014 to R.A.N.) and the Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg (to R.F.).

Compliance with ethical standards

Conflict of interest

Rachel A. North declares that she has no conflict of interest. Christopher R. Horne declares that he has no conflict of interest. James S. Davies declares that he has no conflict of interest. Daniela M. Remus declares that she has no conflict of interest. Andrew C. Muscroft-Taylor declares that he has no conflict of interest. Parveen Goyal declares that he has no conflict of interest. Weixiao Yuan Wahlgren declares that she has no conflict of interest. S. Ramaswamy declares that he has no conflict of interest. Rosmarie Friemann declares that she has no conflict of interest. Renwick C. J. Dobson declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abramson J, Wright EM (2009) Structure and function of Na(+)-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615CrossRefPubMedGoogle Scholar
  3. Almagro-Moreno S, Boyd EF (2009) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bouchet V, Hood DW, Li J et al (2003) Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A 100:8898–8903CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caing-Carlsson R, Goyal P, Sharma A et al (2017) Crystal structure of N-acetylmannosamine kinase from Fusobacterium nucleatum. Acta Crystallogr F Struct Biol Commun 73:356–362CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chang D-E, Smalley DJ, Tucker DL et al (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427–7432CrossRefPubMedPubMedCentralGoogle Scholar
  7. Condemine G, Berrier C, Plumbridge J, Ghazi A (2005) Function and expression of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli. J Bacteriol 187:1959–1965CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deng D, Yan N (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci 25:546–558CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deng D, Xu C, Sun P et al (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125CrossRefPubMedGoogle Scholar
  10. Deng D, Sun P, Yan C et al (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–396CrossRefPubMedGoogle Scholar
  11. Doeven MK, Abele R, Tampé R, Poolman B (2004) The binding specificity of OppA determines the selectivity of the oligopeptide ATP-binding cassette transporter. J Biol Chem 279:32301–32307CrossRefPubMedGoogle Scholar
  12. Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67CrossRefPubMedGoogle Scholar
  13. Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N (1997) Thyroid Na+/I− symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 272:27230–27238CrossRefPubMedGoogle Scholar
  14. Faham S, Watanabe A, Besserer GM et al (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814CrossRefPubMedPubMedCentralGoogle Scholar
  15. Forward JA, Behrendt MC, Wyborn NR, Cross R, Kelly DJ (1997) TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179:5482–5493CrossRefPubMedPubMedCentralGoogle Scholar
  16. Galdiero S, Falanga A, Cantisani M et al (2012) Microbe–host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 13:843–854CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gangi Setty T, Cho C, Govindappa S, Apicella MA, Ramaswamy S (2014) Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site. Acta Crystallogr D Struct Biol 70:1801–1811CrossRefGoogle Scholar
  18. Gruteser N, Marin K, Krämer R, Thomas GH (2012) Sialic acid utilization by the soil bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 336:131–138CrossRefPubMedGoogle Scholar
  19. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113CrossRefPubMedGoogle Scholar
  20. Hohl M, Briand C, Grütter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19:395–402CrossRefPubMedGoogle Scholar
  21. Holder JW, Ulrich JC, DeBono AC et al (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620CrossRefPubMedGoogle Scholar
  23. Huang Y-L, Chassard C, Hausmann M, Von Itzstein M, Hennet T (2015) Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun 6:8141CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jeong HG, Oh MH, Kim BS, Lee MY, Han HJ, Choi SH (2009) The capability of catabolic utilization of N-acetylneuraminic acid, a sialic acid, is essential for Vibrio vulnificus pathogenesis. Infect Immun 77:3209–3217CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnston JW, Zaleski A, Allen S et al (2007) Regulation of sialic acid transport and catabolism in Haemophilus influenzae. Mol Microbiol 66:26–39CrossRefPubMedGoogle Scholar
  26. Johnston JW, Coussens NP, Allen S et al (2008) Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 283:855–865CrossRefPubMedGoogle Scholar
  27. Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699CrossRefPubMedGoogle Scholar
  28. Kelly DJ, Thomas GH (2001) The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25:405–424CrossRefPubMedGoogle Scholar
  29. Lewis AL, Lewis WG (2012) Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol 14:1174–1182CrossRefPubMedGoogle Scholar
  30. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098CrossRefPubMedGoogle Scholar
  31. Mackenzie B, Loo DD, Wright EM (1998) Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 162:101–106CrossRefPubMedGoogle Scholar
  32. Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643CrossRefPubMedGoogle Scholar
  33. Marion C, Aten AE, Woodiga SA, King SJ (2011a) Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae. Infect Immun 79:4193–4200CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marion C, Burnaugh AM, Woodiga SA, King SJ (2011b) Sialic acid transport contributes to pneumococcal colonization. Infect Immun 79:1262–1269CrossRefPubMedGoogle Scholar
  35. Martinez J, Steenbergen S, Vimr E (1995) Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 177:6005–6010CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B, Thomas GH (2009) The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A 106:1778–1783CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mulligan C, Fischer M, Thomas GH (2011) Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 35:68–86CrossRefPubMedGoogle Scholar
  38. Mulligan C, Leech AP, Kelly DJ, Thomas GH (2012) The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777–1779) from Vibrio cholerae. J Biol Chem 287:3598–3608CrossRefPubMedGoogle Scholar
  39. Ng KM, Ferreyra JA, Higginbottom SK et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nomura N, Verdon G, Kang HJ et al (2015) Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401CrossRefPubMedPubMedCentralGoogle Scholar
  41. North RA, Kessans SA, Atkinson SC et al (2013) Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 69:306–312CrossRefGoogle Scholar
  42. North RA, Kessans SA, Griffin MDW et al (2014a) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine-6-phosphate 2-epimerase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 70:650–655CrossRefPubMedPubMedCentralGoogle Scholar
  43. North RA, Seizova S, Stampfli A et al (2014b) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine kinase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 70:643–649CrossRefPubMedPubMedCentralGoogle Scholar
  44. North RA, Watson AJA, Pearce FG et al (2016) Structure and inhibition of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. FEBS Lett 590:4414–4428CrossRefPubMedGoogle Scholar
  45. Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733CrossRefPubMedPubMedCentralGoogle Scholar
  46. Olson ME, King JM, Yahr TL, Horswill AR (2013) Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 195:1779–1788CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pezzicoli A, Ruggiero P, Amerighi F, Telford JL, Soriani M (2012) Exogenous sialic acid transport contributes to group B streptococcus infection of mucosal surfaces. J Infect Dis 206:924–931CrossRefPubMedGoogle Scholar
  48. Phansopa C, Roy S, Rafferty JB et al (2014) Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J 458:499–511CrossRefPubMedPubMedCentralGoogle Scholar
  49. Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophys Acta 1183:5–39CrossRefPubMedGoogle Scholar
  50. Post DMB, Mungur R, Gibson BW, Munson RS (2005) Identification of a novel sialic acid transporter in Haemophilus ducreyi. Infect Immun 73:6727–6735CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458:47–52CrossRefPubMedGoogle Scholar
  52. Robbe-Masselot C, Maes E, Rousset M, Michalski JC, Capon C (2009) Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj J 26:397–413CrossRefPubMedGoogle Scholar
  53. Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41CrossRefPubMedGoogle Scholar
  54. Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718CrossRefPubMedGoogle Scholar
  55. Severi E, Randle G, Kivlin P et al (2005) Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58:1173–1185CrossRefPubMedGoogle Scholar
  56. Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822CrossRefPubMedGoogle Scholar
  57. Severi E, Müller A, Potts JR et al (2008) Sialic acid mutarotation is catalyzed by the Escherichia coli beta-propeller protein YjhT. J Biol Chem 283:4841–4849CrossRefPubMedGoogle Scholar
  58. Severi E, Hosie AHF, Hawkhead JA, Thomas GH (2010) Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 304:47–54CrossRefPubMedGoogle Scholar
  59. Shintre CA, Pike ACW, Li Q et al (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 110:9710–9715CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sillanaukee P, Pönniö M, Jääskeläinen IP (1999) Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Investig 29:413–425CrossRefGoogle Scholar
  61. Steenbergen SM, Jirik JL, Vimr ER (2009) YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid. J Bacteriol 191:7134–7139CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sun L, Zeng X, Yan C et al (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490:361–366CrossRefPubMedGoogle Scholar
  63. Turk E, Kim O, le Coutre J et al (2000) Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J Biol Chem 275:25711–25716CrossRefPubMedGoogle Scholar
  64. Vimr ER, Troy FA (1985) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164:845–853PubMedPubMedCentralGoogle Scholar
  65. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153CrossRefPubMedPubMedCentralGoogle Scholar
  66. Walters DM, Stirewalt VL, Melville SB (1999) Cloning, sequence, and transcriptional regulation of the operon encoding a putative N-acetylmannosamine-6-phosphate epimerase (nanE) and sialic acid lyase (nanA) in Clostridium perfringens. J Bacteriol 181:4526–4532PubMedPubMedCentralGoogle Scholar
  67. Weyand S, Shimamura T, Yajima S et al (2008) Structure and molecular mechanism of a nucleobase–cation–symport-1 family transporter. Science 322:709–713CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wirth C, Condemine G, Boiteux C, Bernèche S, Schirmer T, Peneff CM (2009) NanC crystal structure, a model for outer-membrane channels of the acidic sugar-specific KdgM porin family. J Mol Biol 394:718–731CrossRefPubMedGoogle Scholar
  69. Woo J-S, Zeltina A, Goetz BA, Locher KP (2012) X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol 19:1310–1315CrossRefPubMedGoogle Scholar
  70. Wright EM, Loo DDF, Hirayama BA, Turk E (2004) Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 19:370–376Google Scholar
  71. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/cl-dependent neurotransmitter transporters. Nature 437:215–223CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Rachel A. North
    • 1
  • Christopher R. Horne
    • 1
  • James S. Davies
    • 1
  • Daniela M. Remus
    • 1
  • Andrew C. Muscroft-Taylor
    • 1
  • Parveen Goyal
    • 2
    • 3
  • Weixiao Yuan Wahlgren
    • 2
    • 3
  • S. Ramaswamy
    • 4
  • Rosmarie Friemann
    • 2
    • 3
  • Renwick C. J. Dobson
    • 1
    • 5
  1. 1.Biomolecular Interaction Centre and School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department of Chemistry and Molecular Biology, Biochemistry and Structural BiologyUniversity of GothenburgGothenburgSweden
  3. 3.Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
  4. 4.The Institute for Stem Cell Biology and Regenerative Medicine (InStem)BangaloreIndia
  5. 5.Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations