Advertisement

Biophysical Reviews

, Volume 9, Issue 4, pp 431–441 | Cite as

The Sydney Heart Bank: improving translational research while eliminating or reducing the use of animal models of human heart disease

  • C. G. dos Remedios
  • S. P. Lal
  • A. Li
  • J. McNamara
  • A. Keogh
  • P. S. Macdonald
  • R. Cooke
  • E. Ehler
  • R. Knöll
  • S. B. Marston
  • J. Stelzer
  • H. Granzier
  • C. Bezzina
  • S. van Dijk
  • F. De Man
  • G. J. M. Stienen
  • J. Odeberg
  • F. Pontén
  • W. Linke
  • J. van der Velden
Review

Abstract

The Sydney Heart Bank (SHB) is one of the largest human heart tissue banks in existence. Its mission is to provide high-quality human heart tissue for research into the molecular basis of human heart failure by working collaboratively with experts in this field. We argue that, by comparing tissues from failing human hearts with age-matched non-failing healthy donor hearts, the results will be more relevant than research using animal models, particularly if their physiology is very different from humans. Tissue from heart surgery must generally be used soon after collection or it significantly deteriorates. Freezing is an option but it raises concerns that freezing causes substantial damage at the cellular and molecular level. The SHB contains failing samples from heart transplant patients and others who provided informed consent for the use of their tissue for research. All samples are cryopreserved in liquid nitrogen within 40 min of their removal from the patient, and in less than 5–10 min in the case of coronary arteries and left ventricle samples. To date, the SHB has collected tissue from about 450 failing hearts (>15,000 samples) from patients with a wide range of etiologies as well as increasing numbers of cardiomyectomy samples from patients with hypertrophic cardiomyopathy. The Bank also has hearts from over 120 healthy organ donors whose hearts, for a variety of reasons (mainly tissue-type incompatibility with waiting heart transplant recipients), could not be used for transplantation. Donor hearts were collected by the St Vincent’s Hospital Heart and Lung transplantation team from local hospitals or within a 4-h jet flight from Sydney. They were flushed with chilled cardioplegic solution and transported to Sydney where they were quickly cryopreserved in small samples. Failing and/or donor samples have been used by more than 60 research teams around the world, and have resulted in more than 100 research papers. The tissues most commonly requested are from donor left ventricles, but right ventricles, atria, interventricular system, and coronary arteries vessels have also been reported. All tissues are stored for long-term use in liquid N or vapor (170–180 °C), and are shipped under nitrogen vapor to avoid degradation of sensitive molecules such as RNAs and giant proteins. We present evidence that the availability of these human heart samples has contributed to a reduction in the use of animal models of human heart failure.

Keywords

Human heart failure Human heart tissue bank Healthy donor human hearts Reducing the use of animals in research 

Notes

Acknowledgements

Sean Lal, Amy Li and Cris dos Remedios acknowledge the important contributions of present and former members of the Muscle Research Unit and Heart Research laboratories for their contributions to the collection, documentation and cataloging of human heart samples and data with the collaboration of the surgeons and cardiologists of St Vincent’s Hospital in Sydney over the past 29 years. We particularly acknowledge the contribution of Mr Darryl Cameron in producing the human tissue microarrays. We also acknowledge the grant support provided by Medical Advances Without Animals (MAWA).

Compliance with ethical standards

Conflicts of interest

CG dos Remedios declares that he has no conflicts of interest. SP Lal declares that he has no conflicts of interest. J McNamara declares that he has no conflicts of interest. A Keogh declares that she has no conflicts of interest. PS Macdonald declares that he has no conflicts of interest. R Cooke declares that he has no conflicts of interest. E Ehler declares that she has no conflicts of interest. R Knöll declares that he has no conflicts of interest. SB Marston declares that he has no conflicts of interest. J Stelzer declares that he has no conflicts of interest. H Granzier declares that he has no conflicts of interest. C Bezzina declares that she has no conflicts of interest. S van Dijk declares that she has no conflicts of interest. F De Man declares that she has no conflicts of interest. GJM Stienen declares that he has no conflicts of interest. J Odeberg declares that he has no conflicts of interest. F Pontén declares that he has no conflicts of interest. W Linke declares that he has no conflicts of interest. J van der Velden declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12551_2017_305_MOESM1_ESM.docx (190 kb)
ESM 1 (DOCX 189 kb)

References

  1. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072CrossRefPubMedGoogle Scholar
  2. Berry D, Yao M, Barden JA, Balcar VJ, Hansen MA, Bennett MR, Keogh A, dos Remedios CG (1998) Alterations in the expression of P2X1 receptors in failing and non-diseased human atria. Electrophoresis 19:856–859CrossRefPubMedGoogle Scholar
  3. Berry D, Barden JA, Balcar VJ, Keogh A, dos Remedios CG (1999) Increase in expression of P2X1 receptors in the atria of patients suffering from dilated cardiomyopathy. Electrophoresis 20:2059–2064CrossRefPubMedGoogle Scholar
  4. Berry D, Balcar VJ, Barden JA, Keogh A, dos Remedios CG (2000) Changes in P2X1 receptors in human left ventricles and their relationship to the acto-ATPase α-sarcoglycan (adhalin). Electrophoresis 17: 3857-3862Google Scholar
  5. Cordell HJ, Bentham J, Topf A, Zelenika D, Heath S, Mamasoula C, Cosgrove C, Blue G, Granados-Riveron J, Setchfield K, Thornborough C, Breckpot J, Soemedi R, Martin R, Rahman TJ, Hall D, van Engelen K, Moorman AF, Zwinderman AH, Barnett P, Koopmann TT, Adriaens ME, Varro A, George AL Jr, dos Remedios C, Bishopric NH, Bezzina CR, O’Sullivan J, Gewillig M, Bu’lock FA, Winlaw D, Bhattacharya S, Devriendt K, Brook JD, Mulder BJ, Mital S, Postma AV, Lathrop GM, Farrall M, Goodship JA, Keavney BD (2013) Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet 45:822–824CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dhital KK, Iyer A, Connellan M, Chew HC, Gao L, Doyle A, Hicks M, Kumarasinghe G, Soto C, Dinale A, Cartwright B, Nair P, Granger E, Jansz P, Jabbour A, Kotlyar E, Keogh A, Hayward C, Graham R, Spratt P, Macdonald P (2015) Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: a case series. Lancet 385:2585–2591. doi: 10.1016/S0140-6736(15)60038-1 CrossRefPubMedGoogle Scholar
  7. dos Remedios CG, Liew CC, Allen PD, Winslow RL, Van Eyk JE, Dunn MJ (2003) Genomics, proteomics and bioinformatics of human heart failure. J Muscle Res Cell Motil 24:251–260CrossRefPubMedGoogle Scholar
  8. Dwyer J, Pluess M, Iskratsch T, dos Remedios CG, Ehler E (2015) The formin FHOD1 in cardiomyocytes. Anat Rec 297:1560–1570CrossRefGoogle Scholar
  9. Hamdani N, Krysiak J, Kreusser MM, Neef S, Dos Remedios CG, Maier LS, Krüger M, Backs J, Linke WA (2013) Crucial role for Ca2+/calmodulin dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res 112:664–674Google Scholar
  10. Herman DS, Lam L, Taylor MRG, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinatra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJR, Cook SA, Mestroni L, Weidman JG, Seidman CE (2012) Truncations of titian causing cardiomyopathy. N Engl J Med 3667:619–628CrossRefGoogle Scholar
  11. Huang Z-P, Yan Ding Jinghai Y, Chen J, Wu G, Kataoka M, Hu Y, Yang J-H, Liu J, Drakos SG, Selzman CH, Kyselovic J, Qu L-H, dos Remedios CG, Pu WT, Wang D-Z (2016) Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovasc Res. doi: 10.1093/cvr/cvw201
  12. Iskratsch T, Lange S, Dwyer J, Kho A. dos Remedios C, Ehler E (2010) Formin follows function: a muscle-specific isoform of FHOD3 is regulatedby CK2 phosphorylation and promotes myofibril maintenance. J CellBiol 191:1159–1172Google Scholar
  13. Jiang L, Tsubakihara M, Heinke MY, Yao M, Keogh A, dos Remedios CG, Nosworthy N (2001) Heart failure and apoptosis: electrophoretic methods support data from micro- and macro-arrays: a critical review of genomics and proteomics. Proteomics 1:1481–1488CrossRefPubMedGoogle Scholar
  14. Koetter S, Gout L, Von Frieling-Salewsky M, Müller AE, Helling S, Marcus K, Dos Remedios C, Linke WA, Krüger M (2013) Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res 99:648–656Google Scholar
  15. Kong SW, Hu Y, Ho J, Ikeda S, Polster S, John R, Hall JL, Bisping E, Pieske B, dos Remedios CG, Pu WT (2010) Heart failure associated changes in RNA splicing of sarcomere genes. Circ Cardiovasc Genet 3:138–146. doi: 10.1161/CIRCGENETICS.109.904698 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kooij V, Zhang P, Piersma SR, Sequeira V, Boontje NM, Wijnker PJM, Jiménez KE, dos Remedios C, Murphy AM, Van Eyk JE, van der Velden J, Stienen GJM (2013) PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis. PLoS ONE 8:e74847. doi: 10.1371/journal.pone.0074847 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Koopmann T, Adriaens M, Moerland P, Marsman R, Westerveld M, Lal S, Zhang T, Simmons C, Baczko I, dos Remedios C, Bishopric N, Varro A, George A, Lodder E, Bezzina C (2014) Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS ONE 9:e97380. doi: 10.1371/journal.pone.0097380 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Krüger M, Kötter S, Grützner A, Lang P, Andresen C, Redfield MM, Butt E, Dos Remedios CG, Linke WA (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104:87–94Google Scholar
  19. Kuster DW, Mulders J, Ten Cate FJ, Michels M, dos Remedios CG, da Costa Martins PA, van der Velden J, Oudejans CB (2013) MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J Mol Cell Cardiol 65:59–66CrossRefPubMedGoogle Scholar
  20. Lal S, Li A, Allen D, Allen PD, Bannon P, Cartmill T, Cooke R, Farnsworth A, Keogh A, dos Remedios C (2015) Best practice biobanking of human heart tissue. Biophys Rev 7:399–406. doi: 10.1007/s12551-015-0182-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lal S, Li A, dos Remedios C (2016a) Limitations in translating animal studies to humans in cardiovascular disease. J Cardiovasc Transl Res 9:165–166. doi: 10.1007/s12265-016-9676-2 CrossRefPubMedGoogle Scholar
  22. Lal S, Nguyen L, Tezone R, Ponten F, Odeberg J, Li A, dos Remedios C (2016b) Tissue microarray (TMA) profiling in human heart failure. Proteomics 16:2319–2326. doi: 10.1002/pmic.201600135 CrossRefPubMedGoogle Scholar
  23. Lange S, Gehmlich K, Lun AS, Blondelle J, Hooper C, Dalton ND, Alvarez EA, Zhang X, Bang ML, Abassi YA, dos Remedios CG, Peterson KL, Chen J, Ehler E (2016) MLP and CARP are linked to chronic PKCα signaling in dilated cardiomyopathy. Nat Commun 7:12120. doi: 10.1038/ncomms12120 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li A, Ponten F, dos Remedios CG (2012) The interactome of LIM domain proteins: the contributions of LIM domain proteins to heart failure and heart development. Proteomics 12:203–225CrossRefPubMedGoogle Scholar
  25. Li A, Estigoy C, Raftery M, Cameron D, Odeberg J, Ponten F, Lal S, dos Remedios CG (2013) Heart research advances using database search engines, human protein atlas and the Sydney Heart Bank. Heart Lung Circ 22:819–826CrossRefPubMedGoogle Scholar
  26. Maeder M, Khammy O, dos Remedios C, Kaye D (2011) Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol 58:474–480CrossRefPubMedGoogle Scholar
  27. Mamidi R, Gresham KS, Li A, dos Remedios CG, Stelzer JE (2015) Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C. J Mol Cell Cardiol 85:262–272. doi: 10.1016/j.yjmcc.2015.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Manders E, Bogaard H-J, Handoko ML, van de Veerdonk M, Keogh A, Westerhof N, Stienen GJM, dos Remedios CG, Humbert M, Dorfmüller P, Fadel E, Guignabert C, van der Velden J, Vonk-Noordegraaf A, de Man FS, Ottenheijm CAC (2014) Contractile dysfunction of left ventricular cardiomyocytes in patients with pulmonary arterial hypertension. J Am Coll Cardiol 64:28–37CrossRefPubMedGoogle Scholar
  29. Marsman RF, Bezzina CR, Freiberg F, Verkerk AO, Adriaens ME, Podliesna S, Chen C, Purfürst B, Spallek B, Koopmann TT, Baczko I, Dos Remedios CG, George AL Jr, Bishopric NH, Lodder EM, de Bakker JM, Fischer R, Coronel R, Wilde AA, Gotthardt M, Remme CA (2014) Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J Am Coll Cardiol 63(6):549–559Google Scholar
  30. Marston S, Montgiraud C, Munster AB, Copeland O, Onjee C, dos Remedios C, Messer AE, Ehler E, Knőll R (2015) OBSCN mutations associated with dilated cardiomyopathy and haploinsufficiency. PLoS ONE 10:e0138568. doi: 10.1371/journal.pone.0138568 CrossRefPubMedPubMedCentralGoogle Scholar
  31. McNamara JW, Li A, dos Remedios CG, Cooke R (2015) The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys Rev 7:5–14CrossRefPubMedGoogle Scholar
  32. McNamara J, Li A, Smith NJ, Lal S, Graham RM, Kooiker KB, van Dijk SJ, Remedios CG, Harris SP, Cooke R (2016) Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes. J Mol Cell Cardiol 94:65–71. doi: 10.1016/j.yjmcc.2016.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. McNamara JW, Li A, Lal S, Bos JM, Harris SP, van der Velden J, Ackerman MJ, Cooke R, dos Remedios CG (2017) MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS ONE 12:e0180064. doi: 10.1371/journal.pone.0180064 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, dos Remedios CG, Graham D, Colan S, Kühn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110:1446–1451CrossRefPubMedPubMedCentralGoogle Scholar
  35. Narolska NA, Piroddi N, Belus A, Boontje NM, Scellini B, Deppemann S, Zaremba R, Musters RJ, dos Remedios CG, Jaquet K, Foster DB, Murphy AM, van Eyk JE, Tesi C, Poggesi C, van der Velden J, Stienen GJM (2006) Impaired diastolic function after exchange of endogenous troponin I with C-terminal truncated troponin I in human cardiac muscle. Circ Res 99:1012–1020CrossRefPubMedGoogle Scholar
  36. Peng Y, Ayaz-Guner S, Yu D, Ge Y (2014) Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin Appl 8:554–568. doi: 10.1002/prca.201400043 CrossRefPubMedGoogle Scholar
  37. Pleuss M, Daeubler G, dos Remedios CG, Ehler E (2015) Adaptations of cytoarchitecture in human dilated cardiomyopathy. Biophys Rev 7:25–32. doi: 10.1007/s12551-014-0146-2 CrossRefGoogle Scholar
  38. Polden J, McManus CA, dos Remedios C, Dunn MJ (2011) A 2-D gel reference map of the basic human heart proteome. Proteomics 11:3582–3586CrossRefPubMedGoogle Scholar
  39. Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, dos Remedios CG, Haubner BJ, Penninger JM, Kühn B (2015) Stimulation of cardiomyocyte regeneration in neonatal mice and in human myocardium with neuregulin reveals a therapeutic window. Sci Transl Med 7. doi: 10.1126/scitranslmed.aaa5171
  40. Rain S, Handoko ML, Westerhof N, Stienen GJM, Paulus WJ, Ottenheijm CAC, Marcus JT, Dorfmuller P, Guignabert C, Humbert M, McDonald P, dos Remedios CG, Postmus PE, Vonk-Noordegraaf A, Van der Velden J, De Man FS (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128:2016–2025CrossRefPubMedGoogle Scholar
  41. Ralevic V (2015) P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. Curr Med Chem 22:851–865CrossRefPubMedGoogle Scholar
  42. Robinson AA, Dunn MJ, McCormack A, dos Remedios CG, Rose ML (2010) Protective effect of phosphorylated Hsp27 in coronary arteries through actin stabilization. J Mol Cell Cardiol 49:370–379CrossRefPubMedGoogle Scholar
  43. Seoka J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation and Host Response to Injury, Large Scale Collaborative Research Program (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512. doi: 10.1073/pnas.1222878110 CrossRefGoogle Scholar
  44. Trahair T, Yeoh T, Cartmill T, Chang V, Gunning P, dos Remedios CG (1990) Is atrial myosin light chain 1 a marker of end stage failure in dilated cardiomyopathy? In: Marechál M (ed) Cell motility. Intercept, Hampshire, pp 181–187Google Scholar
  45. Trahair T, Yeoh T, Cartmill T, Keogh A, Spratt P, Chang V, dos Remedios CG, Gunning P (1993) Myosin light chain gene expression associated with diseased states of the human heart. J Mol Cell Cardiol 26:577–585. doi: 10.1006/jmcc.1993.1067 CrossRefGoogle Scholar
  46. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjöstedt E, Asplund A, Olsson IM, Edlund K, Lundberg E, Navani S, Szigyart CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Hanna Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347:1260419. doi: 10.1126/science.1260419 CrossRefPubMedGoogle Scholar
  47. van Dijk SJ, Boontje NM, Heymans MW, ten Cat FJ, Michels M, dos Remedios C, Dooijes D, van Slegtenhorst MA, van der Velden J, Stienen GJM (2013) Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations. Pflugers Arch - Eur J Physiol 466:1619–1633CrossRefGoogle Scholar
  48. Witjas-Paalberends ER, Güçlü A, Germans T, Knaapen P, Harms HJ, Vermeer AMC, Christiaans I, Wilde AAM, dos Remedios C, Lammertsma AA, van Rossum AC, Stienen GJM, van Slegtenhorst M, Schinkel AF, Michels M, Ho CY, Poggesi C, van der Velden J (2014) Gene-specific increase in energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res 103:248–257CrossRefPubMedGoogle Scholar
  49. Yao M, Keogh A, Spratt P, dos Remedios CG, Kiessling PC (1996) Elevated DNase I levels in human idiopathic dilated cardiomyopathy: an indicator of apoptosis? J Mol Cell Cardiol 28:95–101CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. G. dos Remedios
    • 1
  • S. P. Lal
    • 1
  • A. Li
    • 1
    • 2
  • J. McNamara
    • 1
  • A. Keogh
    • 3
  • P. S. Macdonald
    • 3
  • R. Cooke
    • 4
  • E. Ehler
    • 5
  • R. Knöll
    • 6
  • S. B. Marston
    • 7
  • J. Stelzer
    • 8
  • H. Granzier
    • 9
  • C. Bezzina
    • 10
  • S. van Dijk
    • 11
  • F. De Man
    • 11
  • G. J. M. Stienen
    • 11
  • J. Odeberg
    • 12
  • F. Pontén
    • 13
  • W. Linke
    • 14
  • J. van der Velden
    • 11
  1. 1.Sydney Heart Bank, Discipline of Anatomy & HistologyUniversity of SydneySydneyAustralia
  2. 2.Department of Molecular Physiology and BiophysicsUniversity of VermontBurlingtonUSA
  3. 3.Heart Transplant UnitSt Vincent’s HospitalSydneyAustralia
  4. 4.Cardiovascular Research InstituteUniversity of California San FranciscoCaliforniaUSA
  5. 5.Cardiovascular DivisionRandall Division of Cell and Molecular BiophysicsLondonUK
  6. 6.Department of MedicineKarolinska InstitutetHuddingeSweden
  7. 7.National Heart and Lung InstituteImperial College LondonLondonUK
  8. 8.Department of Physiology & BiophysicsCase Western Reserve UniversityClevelandUSA
  9. 9.Molecular Cardiovascular Research ProgramUniversity of ArizonaTucsonUSA
  10. 10.Department of Experimental CardiologyHeart Failure Research CenterAmsterdamThe Netherlands
  11. 11.Department of Physiology, Institute for Cardiovascular ResearchVU University Medical CenterAmsterdamThe Netherlands
  12. 12.Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
  13. 13.Science for Life LaboratoryKTH—Royal Institute of TechnologyStockholmSweden
  14. 14.Ruhr UniversityBochumGermany

Personalised recommendations