Biophysical Reviews

, Volume 9, Issue 5, pp 601–616 | Cite as

The many faces (and phases) of ceramide and sphingomyelin II – binary mixtures

  • María Laura Fanani
  • Bruno Maggio


A rather widespread idea on the functional importance of sphingolipids in cell membranes refers to the occurrence of ordered domains enriched in sphingomyelin and ceramide that are largely assumed to exist irrespective of the type of N-acyl chain in the sphingolipid. Ceramides and sphingomyelins are the simplest kind of two-chained sphingolipids and show a variety of species, depending on the fatty acyl chain length, hydroxylation, and unsaturation. Abundant evidences have shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics, and miscibility, and that even the usually conceived “condensed” sphingolipids and many of their mixtures may exhibit liquid-like expanded states. Their lateral miscibility properties are subtlety regulated by those chemical differences. Even between ceramides with different acyl chain length, their partial miscibility is responsible for a rich two-dimensional structural variety that impacts on the membrane properties at the mesoscale level. In this review, we will discuss the miscibility properties of ceramide, sphingomyelin, and glycosphingolipids that differ in their N-acyl or oligosaccharide chains. This work is a second part that accompanies a previous overview of the properties of membranes formed by pure ceramides or sphingomyelins, which is also included in this Special Issue.


Surface miscibility Langmuir films Compression isotherms Phase diagrams Brewster angle microscopy 



This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, FONCyT PICT 2014-1627), and the Secretary of Science and Technology of Universidad Nacional de Córdoba (SECyT-UNC), Argentina.

Compliance with ethical standards

Conflict of interest

María Laura Fanani declares that she has no conflicts of interest. Bruno Maggio declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ale EC, Maggio B, Fanani ML (2012) Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. Biochim Biophys Acta Biomembr 1818:2767–2776CrossRefGoogle Scholar
  2. Arriaga LR, López-Montero I, Ignés-Mullol J, Monroy F (2010) Domain-growth kinetic origin of nonhorizontal phase coexistence plateaux in langmuir monolayers: compression rigidity of a raft-like lipid distribution. J Phys Chem B 114:4509–4520. doi: 10.1021/jp9118953 CrossRefPubMedGoogle Scholar
  3. Bianco ID, Fidelio GD, Maggio B (1988) Effect of glycerol on the molecular properties of cerebrosides, sulphatides and gangliosides in monolayers. Biochem J 251:613–616CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brockman H (1994) Dipole potential of lipid membranes. Chem Phys Lipids 73:57–79. doi: 10.1016/0009-3084(94)90174-0 CrossRefPubMedGoogle Scholar
  5. Busto JV, Fanani ML, De Tullio L et al (2009) Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Biophys J 97:2717–2726. doi: 10.1016/j.bpj.2009.08.040 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Busto JV, Sot J, Requejo-Isidro J, Goñi FM, Alonso A (2010) Cholesterol displaces palmitoylceramide from its tight packing with palmitoylsphingomyelin in the absence of a liquid-disordered phase. Biophys J 99:1119–1128. doi: 10.1016/j.bpj.2010.05.032 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carrer DC, Maggio B (1999) Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine. J Lipid Res 40:1978–1989PubMedGoogle Scholar
  8. Carrer DC, Maggio B (2001) Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1. Biochim Biophys Acta Biomembr 1514:87–99. doi: 10.1016/S0005-2736(01)00366-2 CrossRefGoogle Scholar
  9. Carrer DC, Schreier S, Patrito M, Maggio B (2006) Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobililty: DMPC and asymmetric ceramide mixtures. Biophys J 90:2394–2403. doi: 10.1529/biophysj.105.074252 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castro BM, de Almeida RFM, Silva LC, Fedorov A, Prieto M (2007) Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach. Biophys J 93:1639–1650. doi: 10.1529/biophysj.107.107714 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Catapano ER, Arriaga LR, Espinosa G, Monroy F, Langevin D, López-Montero I (2011) Solid character of membrane ceramides: a surface rheology study of their mixtures with sphingomyelin. Biophys J 101:2721–2730. doi: 10.1016/j.bpj.2011.10.049 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Catapano ER, Lillo MP, García Rodríguez C et al (2015) Thermomechanical transitions of egg-ceramide monolayers. Langmuir 31:3912–3918. doi: 10.1021/acs.langmuir.5b00229 CrossRefPubMedGoogle Scholar
  13. Chiantia S, Ries J, Chwastek G et al (2008) Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochim Biophys Acta Biomembr 1778:1356–1364. doi: 10.1016/j.bbamem.2008.02.008 CrossRefGoogle Scholar
  14. Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM (2003) Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 278:37169–37174. doi: 10.1074/jbc.M303206200 CrossRefPubMedGoogle Scholar
  15. Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53. doi: 10.1016/S0014-5793(02)03489-0 CrossRefPubMedGoogle Scholar
  16. de Almeida RFM, Loura LMS, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120. doi: 10.1016/j.jmb.2004.12.026 CrossRefPubMedGoogle Scholar
  17. De Tullio L, Maggio B, Fanani ML (2008) Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers. J Lipid Res 49:2347–2355. doi: 10.1194/jlr.M800127-JLR200 CrossRefPubMedGoogle Scholar
  18. Diociaiuti M, Ruspantini I, Giordani C, Bordi F, Chistolini P (2004) Distribution of GD3 in DPPC monolayers: a thermodynamic and atomic force microscopy combined study. Biophys J 86:321–328. doi: 10.1016/S0006-3495(04)74107-7 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dupuy F, Fanani ML, Maggio B (2011) Ceramide N-acyl chain length: a determinant of bidimensional transitions, condensed domain morphology, and interfacial thickness. Langmuir 27:3783–3791CrossRefPubMedGoogle Scholar
  20. Dupuy F, Maggio B (2012) The hydrophobic mismatch determines the miscibility of ceramides in lipid monolayers. Chem Phys Lipids 165:615–629. doi: 10.1016/j.chemphyslip.2012.06.008 CrossRefPubMedGoogle Scholar
  21. Dupuy FG, Maggio B (2014) N-acyl chain in ceramide and sphingomyelin determines their mixing behavior, phase state, and surface topography in Langmuir films. J Phys Chem B 118:7475–7487. doi: 10.1021/jp501686q CrossRefGoogle Scholar
  22. Fanani ML, De Tullio L, Hartel S, Jara J, Maggio B (2009) Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition. Biophys J 96:67–76. doi: 10.1529/biophysj.108.141499 CrossRefPubMedGoogle Scholar
  23. Fanani ML, Härtel S, Oliveira RG, Maggio B (2002) Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys J 83:3416–3424CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fanani ML, Maggio B (2010) Phase state and surface topography of palmitoyl-ceramide monolayers. Chem Phys Lipids 163:594–600CrossRefPubMedGoogle Scholar
  25. Frey SL, Chi EY, Arratia C, Majewski J, Kjaer K, Lee KY (2008) Condensing and fluidizing effects of ganglioside GM1 on phospholipid films. Biophys J 94:3047–3064. doi: 10.1529/biophysj.107.119990 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goñi FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta Biomembr 1758:1902–1921. doi: 10.1016/j.bbamem.2006.09.011 CrossRefGoogle Scholar
  27. Goñi FM, Alonso A (2009) Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta Biomembr 1788:169–177. doi: 10.1016/j.bbamem.2008.09.002 CrossRefGoogle Scholar
  28. Gutierrez-Campos A, Diaz-Leines G, Castillo R (2010) Domain growth, pattern formation, and morphology transitions in Langmuir monolayers. A new growth instability. J Phys Chem B 114:5034–5046. doi: 10.1021/jp910344h CrossRefPubMedGoogle Scholar
  29. Härtel S, Fanani ML, Maggio B (2005) Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys J 88:287–304. doi: 10.1529/biophysj.104.048959 CrossRefPubMedGoogle Scholar
  30. Heerklotz H (2008) Interactions of surfactants with lipid membranes. Q Rev Biophys 41:205–264. doi: 10.1017/S0033583508004721 CrossRefPubMedGoogle Scholar
  31. Hertz R, Barenholz Y (1975) Permeability and integrity properties of lecithin-sphingomyelin liposomes. Chem Phys Lipids 15:138–156. doi: 10.1016/0009-3084(75)90037-7 CrossRefPubMedGoogle Scholar
  32. Holopainen JM, Brockman HL, Brown RE, Kinnunen PK (2001) Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain. Biophys J 80:765–775. doi: 10.1016/S0006-3495(01)76056-0 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hsueh Y-W, Giles R, Kitson N, Thewalt J (2002) The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study. Biophys J 82:3089–3095. doi: 10.1016/S0006-3495(02)75650-6 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang HW, Goldberg EM, Zidovetzki R (1996) Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun 220:834–838. doi: 10.1006/bbrc.1996.0490 CrossRefPubMedGoogle Scholar
  35. Israelachvili JN (2011) Soft and biological structures. In: Israelachvili JN (ed) Intermolecular and surface forces, 3rd edn. Academic Press, San Diego, CA, pp 535–576Google Scholar
  36. Karttunen M, Haataja MP, Säily M, Vattulainen I, Holopainen JM (2009) Lipid domain morphologies in phosphatidylcholine—ceramide monolayers. Langmuir 25:4595–4600. doi: 10.1021/la803377s
  37. Kolesnick RN, Goñi FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300CrossRefPubMedGoogle Scholar
  38. Leung SSW, Busto JV, Keyvanloo A, Goñi FM, Thewalt J (2012) Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophys J 103:2465–2474. doi: 10.1016/j.bpj.2012.10.041 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li X-M, Momsen MM, Brockman HL, Brown RE (2002) Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing. Biophys J 83:1535–1546. doi: 10.1016/S0006-3495(02)73923-4 CrossRefPubMedPubMedCentralGoogle Scholar
  40. López-Montero I, Catapano ER, Espinosa G, Arriaga LR, Langevin D, Monroy F (2013) Shear and compression rheology of Langmuir monolayers of natural ceramides: solid character and plasticity. Langmuir 29:6634–6644. doi: 10.1021/la400448x CrossRefPubMedGoogle Scholar
  41. López-Montero I, Monroy F, Vélez M, Devaux PF (2010) Ceramide: from lateral segregation to mechanical stress. Biochim Biophys Acta Biomembr 1798:1348–1356. doi: 10.1016/j.bbamem.2009.12.007 CrossRefGoogle Scholar
  42. Mabrey S, Sturtevant JM (1976) Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A 73:3862–3866CrossRefPubMedPubMedCentralGoogle Scholar
  43. Maccioni HJF, Giraudo CG, Daniotti JL (2002) Understanding the stepwise synthesis of glycolipids. Neurochem Res 27:629–636. doi: 10.1023/A:1020271932760 CrossRefPubMedGoogle Scholar
  44. Maggio B (1999) Modulation of phospholipase A2 by electrostatic fields and dipole potential of glycosphingolipids in monolayers. J Lipid Res 40:930–939PubMedGoogle Scholar
  45. Maggio B (2004) Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chem Phys Lipids 132:209–224. doi: 10.1016/j.chemphyslip.2004.07.002 CrossRefPubMedGoogle Scholar
  46. Maggio B (1994) The surface behavior of glycosphingolipids in biomembranes: a new frontier of molecular ecology. Prog Biophys Mol Biol 62:55–117. doi: 10.1016/0079-6107(94)90006-X CrossRefPubMedGoogle Scholar
  47. Maggio B, Ariga T, Calderón RO, Yu RK (1997) Ganglioside GD3 and GD3-lactone mediated regulation of the intermolecular organization in mixed monolayers with dipalmitoylphosphatidylcholine. Chem Phys Lipids 90:1–10. doi: 10.1016/S0009-3084(97)00090-X CrossRefPubMedGoogle Scholar
  48. Maggio B, Ariga T, Sturtevant JM, Yu RK (1985) Thermotropic behavior of glycosphingolipids in aqueous dispersions. Biochemistry 24:1084–1092CrossRefPubMedGoogle Scholar
  49. Maggio B, Borioli GA, Del Boca M et al (2008) Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins: above the nano- but under the micro-scale: Mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 50:79–109. doi: 10.1007/s12013-007-9004-1 CrossRefPubMedGoogle Scholar
  50. Maggio B, Carrer DC, Fanani ML, Oliveira RG, Rosetti CM (2004) Interfacial behavior of glycosphingolipids and chemically related sphingolipids. Curr Opin Colloid Interface Sci 8:448–458CrossRefGoogle Scholar
  51. Maggio B, Cumar FA, Caputto R (1978a) Interactions of gangliosides with phospholipids and glycosphingolipids in mixed monolayers. Biochem J 175:1113–1118CrossRefPubMedPubMedCentralGoogle Scholar
  52. Maggio B, Cumar FA, Caputto R (1978b) Surface behaviour of Gangliosides and related glycosphingolipids. Biochem J 171:559–565CrossRefPubMedPubMedCentralGoogle Scholar
  53. Maggio B, Cumar FA, Caputto R (1981) Molecular behaviour of glycosphingolipids in interfaces. Possible participation in some properties of nerve membranes. Biochim Biophys Acta 650:69–87CrossRefPubMedGoogle Scholar
  54. Maggio B, Fanani ML, Rosetti CM, Wilke N (2006) Biophysics of sphingolipids II. Glycosphingolipids: an assortment of multiple structural information transducers at the membrane surface. Biochim Biophys Acta Biomembr 1758:1922–1944CrossRefGoogle Scholar
  55. McConnell HM (1990) Harmonic shape transitions in lipid monolayer domains. J Phys Chem 94:4728–4731CrossRefGoogle Scholar
  56. Möhwald H (1995) Phospholipid monolayers. In: Lipowsky R, Sackmann E (eds) Structure and dynamics of membranes A. Elsevier Science B.V., Amsterdam, pp 161–211Google Scholar
  57. Oliveira RG, Maggio B (2000) Epifluorescence microscopy of surface domain microheterogeneity in myelin monolayers at the air–water interface. Neurochem Res 25:77–86. doi: 10.1023/A:1007591516539 CrossRefPubMedGoogle Scholar
  58. Oliveira RG, Maggio B (2002) Compositional domain immiscibility in whole myelin monolayers at the air–water interface and Langmuir–Blodgett films. Biochim Biophys Acta Biomembr 1561:238–250. doi: 10.1016/S0005-2736(02)00350-4 CrossRefGoogle Scholar
  59. Patra SK, Alonso A, Arrondo JLR, Goñi FM (1999) Liposomes containing sphingomyelin and cholesterol: detergent solubilisation and infrared spectroscopic studies. J Liposome Res 9:247–260. doi: 10.3109/08982109909024788 CrossRefGoogle Scholar
  60. Patra SK, Alonso A, Goñi FM (1998) Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochim Biophys Acta Biomembr 1373:112–118. doi: 10.1016/S0005-2736(98)00095-9 CrossRefGoogle Scholar
  61. Peñalva DA, Wilke N, Maggio B, Aveldaño MI, Fanani ML (2014) Surface behavior of sphingomyelins with very long chain polyunsaturated fatty acids and effects of their conversion to ceramides. Langmuir 30:4385–4395. doi: 10.1021/la500485x CrossRefPubMedGoogle Scholar
  62. Perillo MA, Guidotti A, Costa E, Yu RK, Maggio B (1994) Modulation of phospholipases A2 and C activities against dilauroylphosphorylcholine in mixed monolayers with semisynthetic derivatives of ganglioside and sphingosine. Mol Membr Biol 11:119–126. doi: 10.3109/09687689409162229 CrossRefPubMedGoogle Scholar
  63. Phillips MC (1972) The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes. In: Danielli JF, Rosenberg MD, Cadenhead DA (eds) Progress in surface and membrane science. Academic Press, New York, pp 139–221Google Scholar
  64. Phillips MC, Graham DE, Hauser H (1975) Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Science 254:154–156Google Scholar
  65. Pilar Veiga M, Arrondo JLR, Goñi FM, Alonso A, Marsh D (2001) Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40:2614–2622. doi: 10.1021/bi0019803 CrossRefGoogle Scholar
  66. Pinto SN, Silva LC, de Almeida RFM, Prieto M (2008) Membrane domain formation, interdigitation, and morphological alterations induced by the very long chain asymmetric C24:1 ceramide. Biophys J 95:2867–2879. doi: 10.1529/biophysj.108.129858 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pinto SN, Silva LC, Futerman AH, Prieto M (2011) Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim Biophys Acta Biomembr 1808:2753–2760. doi: 10.1016/j.bbamem.2011.07.023 CrossRefGoogle Scholar
  68. Regen SL (2002) Lipid–lipid recognition in fluid bilayers: solving the cholesterol mystery. Curr Opin Chem Biol 6:729–735. doi: 10.1016/S1367-5931(02)00398-8 CrossRefPubMedGoogle Scholar
  69. Risbo J, Sperotto MM, Mouritsen OG (1995) Theory of phase equilibria and critical mixing points in binary lipid bilayers. J Chem Phys 103:3643–3656. doi: 10.1063/1.470041 CrossRefGoogle Scholar
  70. Rosetti CM, Oliveira RG, Maggio B (2005) The Folch–Lees proteolipid induces phase coexistence and transverse reorganization of lateral domains in myelin monolayers. Biochim Biophys Acta Biomembr 1668:75–86. doi: 10.1016/j.bbamem.2004.11.009 CrossRefGoogle Scholar
  71. Rosetti CM, Oliveira RG, Maggio B (2003) Reflectance and topography of glycosphingolipid monolayers at the air–water interface. Langmuir 19:377–384. doi: 10.1021/la026370d CrossRefGoogle Scholar
  72. Ruiz-Argüello MB, Basáñez G, Goñi FM, Alonso A (1996) Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem 271:26616–26621. doi: 10.1074/jbc.271.43.26616
  73. Silva LC, de Almeida RFM, Castro BM, Fedorov A, Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92:502–516. doi: 10.1529/biophysj.106.091876 CrossRefPubMedGoogle Scholar
  74. Silva LC, Futerman AH, Prieto M (2009) Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations. Biophys J 96:3210–3222. doi: 10.1016/j.bpj.2008.12.3923 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels: implications for apoptosis. J Biol Chem 275:38640–38644. doi: 10.1074/jbc.C000587200 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sot J, Aranda FJ, Collado M-I, Goñi FM, Alonso A (2005) Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J 88:3368–3380. doi: 10.1529/biophysj.104.057851 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sot J, Bagatolli LA, Goñi FM, Alonso A (2006) Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90:903–914. doi: 10.1529/biophysj.105.067710 CrossRefPubMedGoogle Scholar
  78. Sot J, Collado MI, Arrondo JLR, Alonso A, Goñi FM (2002) Triton X-100-resistant bilayers: effect of lipid composition and relevance to the raft phenomenon. Langmuir 18:2828–2835. doi: 10.1021/la011381c CrossRefGoogle Scholar
  79. Staneva G, Chachaty C, Wolf C, Koumanov K, Quinn PJ (2008) The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. Biochim Biophys Acta Biomembr 1778:2727–2739. doi: 10.1016/j.bbamem.2008.07.025 CrossRefGoogle Scholar
  80. van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211. doi: 10.1042/BJ20021528 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vega Mercado F, Maggio B, Wilke N (2012) Modulation of the domain topography of biphasic monolayers of stearic acid and dimyristoyl phosphatidylcholine. Chem Phys Lipids 165:232–237. doi: 10.1016/j.chemphyslip.2012.01.003 CrossRefPubMedGoogle Scholar
  82. Veiga MP, Arrondo JL, Goñi FM, Alonso A (1999) Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J 76:342–350. doi: 10.1016/S0006-3495(99)77201-2 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Veiga MP, Goñi FM, Alonso A, Marsh D (2000) Mixed membranes of sphingolipids and glycerolipids as studied by spin-label ESR spectroscopy. A search for domain formation. Biochemistry 39:9876–9883. doi: 10.1021/bi000678r CrossRefPubMedGoogle Scholar
  84. Westerlund B, Grandell PM, Isaksson YJE, Slotte JP (2010) Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes. Eur Biophys J 39:1117–1128. doi: 10.1007/s00249-009-0562-6 CrossRefPubMedGoogle Scholar
  85. Wilke N, Maggio B (2009) The influence of domain crowding on the lateral diffusion of ceramide-enriched domains in a sphingomyelin monolayer. J Phys Chem B 113:12844–12851. doi: 10.1021/jp904378y CrossRefPubMedGoogle Scholar
  86. Wilke N, Vega Mercado F, Maggio B (2010) Rheological properties of a two phase lipid monolayer at the air/water interface: effect of the composition of the mixture. Langmuir 26:11050–11059. doi: 10.1021/la100552j CrossRefPubMedGoogle Scholar
  87. Yu RK, Bieberich E, Xia T, Zeng G (2004) Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res 45:783–793. doi: 10.1194/jlr.R300020-JLR200 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations