Advertisement

Biophysical Reviews

, Volume 9, Issue 4, pp 289–291 | Cite as

Protein–nucleic acids interactions: new ways of connecting structure, dynamics and function

  • Maria Spies
  • Brian O. Smith
Letter to the Editor

Molecular machines that act on nucleic acids, DNA and RNA are at the heart of the field of cellular information processing. A coherent description of the interactions involved in their assembly, activities and regulation affords a quantitative understanding of how transcription factors and DNA repair proteins find their unique targets among millions of nonspecific sequences and undamaged DNA bases, how the intricate choreography of DNA replication, recombination and repair and gene expression is regulated, how viral particles self-assemble and how chromosomes are organized inside living cells. These important questions are not easy to answer for the following reasons:(1) transactions between proteins and nucleic acids commonly involve extended surfaces with multiple interaction epitopes, and the resulting macromolecular assemblies are non-homogenous and dynamic; (2) the structures of multicomponent protein–DNA and protein–RNA complexes are often refractory to analysis by traditional...

Notes

Compliance with ethical standards

Conflict of interest

Maria Spies and Brian O. Smith declare that they have no conflicts of interest to declare.

References

  1. Belorusova AY, Osz J, Petoukhov MV, Peluso-Iltis C, Kieffer B, Svergun DI, Rochel N (2016) Solution behavior of the intrinsically disordered N-terminal domain of retinoid X receptor alpha in the context of the full-length protein. Biochemistry 55(12):1741–1748CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boehm EM, Subramanyam S, Ghoneim M, Washington MT, Spies M (2016) Quantifying the assembly of multicomponent molecular machines by single-molecule Total internal reflection fluorescence microscopy. Methods Enzymol 581:105–145CrossRefPubMedGoogle Scholar
  3. Cornish PV, Ha T (2007) A survey of single-molecule techniques in chemical biology. ACS Chem Biol 2(1):53–61CrossRefPubMedGoogle Scholar
  4. Daldrop P, Brutzer H, Huhle A, Kauert DJ, Seidel R (2015) Extending the range for force calibration in magnetic tweezers. Biophys J 108(10):2550–2561CrossRefPubMedPubMedCentralGoogle Scholar
  5. Duss O, Yulikov M, Allain FH, Jeschke G (2015) Combining NMR and EPR to determine structures of large RNAs and protein-RNA complexes in solution. Methods Enzymol 558:279–331CrossRefPubMedGoogle Scholar
  6. Duss O, Yulikov M, Jeschke G, Allain FH (2014) EPR-aided approach for solution structure determination of large RNAs or protein–RNA complexes. Nat Commun 5:3669CrossRefPubMedGoogle Scholar
  7. Fuentes-Perez ME, Dillingham MS, Moreno-Herrero F (2013) AFM volumetric methods for the characterization of proteins and nucleic acids. Methods 60(2):113–121CrossRefPubMedGoogle Scholar
  8. Hamatsu J, O'Donovan D, Tanaka T, Shirai T, Hourai Y, Mikawa T, Ikeya T, Mishima M, Boucher W, Smith BO, Laue ED, Shirakawa M, Ito Y (2013) High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system. J Am Chem Soc 135(5):1688–1691CrossRefPubMedGoogle Scholar
  9. Hashemi Shabestari M, Meijering AE, Roos WH, Wuite GJ, Peterman EJ (2017) Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy. Methods Enzymol 582:85–119CrossRefPubMedGoogle Scholar
  10. Ito Y, Mikawa T, Smith BO (2012) In-cell NMR of intrinsically disordered proteins in prokaryotic cells. Methods Mol Biol 895:19–31CrossRefPubMedGoogle Scholar
  11. Lin JL, Wu CC, Yang WZ, Yuan HS (2016) Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer. Nucleic Acids Res 44(21):10480–10490PubMedPubMedCentralGoogle Scholar
  12. Martinez-Zapien D, Delsuc MA, Trave G, Lutzing R, Rochette-Egly C, Kieffer B (2014) Production and characterization of a retinoic acid receptor RARgamma construction encompassing the DNA binding domain and the disordered N-terminal proline rich domain. Protein Expr Purif 95:113–120CrossRefPubMedGoogle Scholar
  13. Rutkauskas M, Krivoy A, Szczelkun MD, Rouillon C, Seidel R (2017) Single-molecule insight into target recognition by CRISPR–Cas complexes. Methods Enzymol 582:239–273CrossRefPubMedGoogle Scholar
  14. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith BO, Shirakawa M, Guntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458(7234):102–105CrossRefPubMedGoogle Scholar
  15. Spies M (2014) Fulfilling the dream of a perfect genome editing tool. Proc Natl Acad Sci USA 111(28):10029–10030CrossRefPubMedPubMedCentralGoogle Scholar
  16. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci USA 111(27):9798–9803CrossRefPubMedPubMedCentralGoogle Scholar
  17. Taylor JA, Pastrana CL, Butterer A, Pernstich C, Gwynn EJ, Sobott F, Moreno-Herrero F, Dillingham MS (2015) Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation. Nucleic Acids Res 43(2):719–731CrossRefPubMedPubMedCentralGoogle Scholar
  18. Zhou Q, Li H, Li H, Nakagawa A, Lin JL, Lee ES, Harry BL, Skeen-Gaar RR, Suehiro Y, William D, Mitani S, Yuan HS, Kang BH, Xue D (2016) Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 353(6297):394–399CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations