Biophysical Reviews

, Volume 9, Issue 4, pp 421–429 | Cite as

Directly watching biomolecules in action by high-speed atomic force microscopy

Review

Abstract

Proteins are dynamic in nature and work at the single molecule level. Therefore, directly watching protein molecules in dynamic action at high spatiotemporal resolution must be the most straightforward approach to understanding how they function. To make this observation possible, high-speed atomic force microscopy (HS-AFM) has been developed. Its current performance allows us to film biological molecules at 10–16 frames/s, without disturbing their function. In fact, dynamic structures and processes of various proteins have been successfully visualized, including bacteriorhodopsin responding to light, myosin V walking on actin filaments, and even intrinsically disordered proteins undergoing order/disorder transitions. The molecular movies have provided insights that could not have been reached in other ways. Moreover, the cantilever tip can be used to manipulate molecules during successive imaging. This capability allows us to observe changes in molecules resulting from dissection or perturbation. This mode of imaging has been successfully applied to myosin V, peroxiredoxin and doublet microtubules, leading to new discoveries. Since HS-AFM can be combined with other techniques, such as super-resolution optical microscopy and optical tweezers, the usefulness of HS-AFM will be further expanded in the near future.

Keywords

Imaging High-speed AFM Proteins Dynamic processes Structural changes 

Notes

Acknowledgments

This work was supported by JST/CREST (#JPMJCR13M1) and KAKENHI from the Ministry of Education, Culture, Sports, Science and Technology, Japan (#21113002, #24227005 and #26119003).

Compliance with ethical standards

Conflicts of interest

Toshio Ando declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437CrossRefGoogle Scholar
  3. Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414CrossRefPubMedGoogle Scholar
  4. Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boyer PD (1997) The ATP synthase--a splendid molecular machine. Annu Rev Biochem 66:717–749CrossRefPubMedGoogle Scholar
  6. Capitanio M, Pavone FS (2013) Interrogating biology with force: Single molecule high-resolution measurements with optical tweezers. Biophys J 105:1293–1303CrossRefPubMedPubMedCentralGoogle Scholar
  7. Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau J-P, Stahlberg H, Sturgis JN, Scheuring S (2012) Characterization of the motion of membrane proteins using high speed atomic force microscopy. Nat Nanotechnol 7:525–529CrossRefPubMedGoogle Scholar
  8. Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, Scheuring S, Roux A (2015) Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:1–14CrossRefGoogle Scholar
  9. Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: At the interface of biology, physics and chemistry. J R Soc Interface 5:15–45CrossRefPubMedGoogle Scholar
  10. Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C (2016) Condensin Smc2-Smc4 Dimers are flexible and dynamic. Cell Rep 14:1813–1818CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fantner GE, Barbero RJ, Gray DS, Belcher AM (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5:280–285CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T (2013) High-speed atomic force microscope combined with single-molecule fluorescence microscope. Rev Sci Instrum 84:073706 (8 pp)CrossRefPubMedGoogle Scholar
  13. Hashimoto M, Kodera N, Tsunaka Y, Oda M, Tanimoto M, Ando T, Morikawa K, Tate S (2013) Phosphorylation-coupled intramolecular dynamics of unstructured regions in chromatin remodeler FACT. Biophys J 104:2222–2234CrossRefPubMedPubMedCentralGoogle Scholar
  14. Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: Using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 42:83–116CrossRefPubMedGoogle Scholar
  15. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282CrossRefPubMedGoogle Scholar
  16. Igarashi K, Uchihashi T, Uchiyama T, Sugimoto H, Wada M, Suzuki K, Sakuda S, Ando T, Watanabe T, Samejima M (2014) Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nat Commun 5:3975 (7 pp)CrossRefPubMedGoogle Scholar
  17. Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6:237–260CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kodera N, Sakashita M, Ando T (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum 77:083704 (7 pp)CrossRefGoogle Scholar
  19. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76CrossRefPubMedGoogle Scholar
  20. Kodera N, Uchida K, Ando T, Aizawa S (2015) Two-ball structure of the flagellar hook-length control protein FliK as revealed by high-speed atomic force microscopy. J Mol Biol 427:406–414CrossRefPubMedGoogle Scholar
  21. Kowal J, Chami M, Baumgartner P, Arheit M, Chiu P-L, Rangl M, Scheuring S, Schröder GF, Nimigean CM, Stahlberg H (2014) Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 5:3106 (10 pp)CrossRefPubMedPubMedCentralGoogle Scholar
  22. Milhiet P-E, Yamamoto D, Berthoumieu O, Dosset P, Le Grimellec C, Verdier J-M, Marchal S, Ando T (2010) Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS ONE 5:e13240 (8 pp)CrossRefPubMedPubMedCentralGoogle Scholar
  23. Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem Phys Chem 9:1859–1866CrossRefPubMedGoogle Scholar
  24. Nango E et al (2016) A three-dimensionalmovie of structural changes in bacteriorhodopsin. Science 354:1552–1557CrossRefPubMedGoogle Scholar
  25. Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQP (2015) Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed AFM. elife 4:e04806 (22 pp)CrossRefPubMedCentralGoogle Scholar
  26. Noi K, Yamamoto D, Nishikori S, Arita-Morioka K, Ando T, Ogura T (2013) High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure 21:1992–2002CrossRefPubMedGoogle Scholar
  27. Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302CrossRefPubMedGoogle Scholar
  28. Oestreicher Z, Taoka A, Fukumori Y (2015) A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia Coli and Rhodobacter sphaeroides. Micron 72:8–14CrossRefPubMedGoogle Scholar
  29. Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, Blaas D, Gelbmann N, Gruber HJ, Ando T, Hinterdorfer P (2014) IgGs are made for walking on bacterial and viral surfaces. Nat Commun 5:4394 (8 pp)CrossRefPubMedGoogle Scholar
  30. Preiner J, Horner A, Karner A, Ollinger N, Siligan C, Pohl P, Hinterdorfer P (2015) High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. Nano Lett 15:759–763CrossRefPubMedGoogle Scholar
  31. Rajendran A, Endo M, Sugiyama H (2015) Direct visualization of walking motions of photocontrolled nanomachine on the DNA nanostructure. Nano Lett 15:6672–6676CrossRefGoogle Scholar
  32. Rangl M, Miyagi A, Kowal J, Stahlberg H, Nimigean CM, Scheuring S (2016) Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nat Commun 7:12789 (8 pp)CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S (2017) Direct visualization of glutamate transporter elevator mechanism in substrate transport by high-speed AFM. Proc Natl Acad Sci U S A 114:1584–1588CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sakiyama Y, Mazur A, Kapinos LE, Lim RYH (2016) Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 11:719–723CrossRefPubMedGoogle Scholar
  35. Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. Nat Nanotechnol 5:208–212CrossRefPubMedGoogle Scholar
  36. Shibata M, Uchihashi T, Ando T, Yasuda R (2015) Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Sci Rep 5:8724 (7 pp)CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shlyakhtenko LS, Lushnikov AY, Miyagi A, Li M, Harris RS, Lyubchenko YL (2013) Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. J Struct Biol 184:217–225CrossRefPubMedGoogle Scholar
  38. Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755−758Google Scholar
  39. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protocols 7:1193–1206CrossRefPubMedGoogle Scholar
  40. Uchihashi T, Watanabe H, Fukuda S, Shibata M, Ando T (2016) Functional extension of high-speed atomic force microscopy. Ultramicroscopy 160:182–196CrossRefPubMedGoogle Scholar
  41. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427CrossRefPubMedGoogle Scholar
  42. Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK (2000) Probing protein–protein interactions in real time. Nat Struct Biol 7:644–647CrossRefPubMedGoogle Scholar
  43. Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282CrossRefPubMedGoogle Scholar
  44. Wang RY-R, Kudryashev M, Li X, Egelman EH, Basler M, Cheng Y, Baker D, DiMaio F (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Method 12:335–338CrossRefGoogle Scholar
  45. Watanabe H, Uchihashi T, Kobashi T, Shibata M, Nishiyama J, Yasuda R, Ando T (2013) Wide-area scanner for high-speed atomic force microscopy. Rev Sci Instrum 84:053702 (10 pp)CrossRefPubMedGoogle Scholar
  46. Watanabe-Nakayama T, Ono K, Itami M, Takahashi R, Teplow DB, Yamada M (2016) High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates. Proc Natl Acad Sci U S A 113:5835–5840CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169CrossRefPubMedGoogle Scholar
  48. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signaling and regulation. Nat Rev Mol Cell Biol 16:18–29CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yamamoto D, Ando T (2016) Chaperonin GroEL-GroES functions as both alternating and non-alternating engines. J Mol Biol 428:3090–3101CrossRefPubMedGoogle Scholar
  50. Yamamoto D, Uchihashi T, Kodera N, Yamashita H, Nishikori S, Ogura T, Shibata M, Ando T (2010) High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods Enzymol 475(Part B):541–564CrossRefPubMedGoogle Scholar
  51. Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H, Kondo-Kakuta C, Kimura Y, Hirano H, Ando T, Noda NN, Ohsumi Y (2016) The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell 38:86–99CrossRefPubMedGoogle Scholar
  52. Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y (2012) Single molecule imaging on living bacterial cell surface by high-speed AFM. J Mol Biol 422:300–309CrossRefPubMedGoogle Scholar
  53. Yamashita H, Inoue K, Shibata M, Uchihashi T, Sasaki J, Kandori H, Ando T (2013) Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J Struct Biol 184:2–11CrossRefPubMedGoogle Scholar
  54. Yokokawa M, Takeyasu K (2011) Motion of the Ca2+-pump captured. FEBS J 278:3025–3031CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Bio-AFM Frontier Research Center, Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  2. 2.CREST, Japan Science and Technology AgencyTokyoJapan

Personalised recommendations