Advertisement

Biophysical Reviews

, Volume 9, Issue 3, pp 189–199 | Cite as

Nuances of electrophoresis study of titin/connectin

  • Ivan M. Vikhlyantsev
  • Zoya A. Podlubnaya
Review

Abstract

Almost 40 years has passed since the discovery of giant elastic protein titin (also known as connectin) of striated and smooth muscles using gel electrophoresis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a major technique for studying the isoform composition and content of titin. This review provides historical insights into the technical aspects of the electrophoresis methods used to identify titin and its isoforms. We particularly focus on the nuances of the technique that improve the preservation of its primary structure so that its high molecular weight isoforms can be visualized.

Keywords

Striated muscles Titin/connectin Titin isoforms SDS-Page 

Notes

Acknowledgements

We thank Sergey Udaltsov for helpful discussions on electrophoretic techniques. This work was financially supported by the Russian Foundation for Basic Research (project No. 14-04-00112 and 17-04-00326).

Compliance with ethical standards

Conflict of interest

Ivan M. Vikhlyantsev declares that he has no conflicts of interest. Zoya A. Podlubnaya declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89(11):1065–1072PubMedCrossRefGoogle Scholar
  2. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitás K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86(1):59–67PubMedCrossRefGoogle Scholar
  3. Etlinger JD, Zak R, Fischman DA (1976) Compositional studies of myofibrils from rabbit striated muscle. J Cell Biol 68(1):123–141PubMedCrossRefGoogle Scholar
  4. Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10(13):2606–2617PubMedCrossRefGoogle Scholar
  5. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86(11):1114–1121PubMedCrossRefGoogle Scholar
  6. Fritz JD, Swartz DR, Greaser ML (1989) Factors affecting polyacrylamide gel electrophoresis and electroblotting of high-molecular-weight myofibrillar proteins. Anal Biochem 180(2):205–210PubMedCrossRefGoogle Scholar
  7. Gerull B (2015) The rapidly evolving role of titin in cardiac physiology and cardiomyopathy. Can J Cardiol 31(11):1351–1359. doi: 10.1016/j.cjca.2015.08.016 PubMedCrossRefGoogle Scholar
  8. Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68(3):1027–1044PubMedPubMedCentralCrossRefGoogle Scholar
  9. Granzier HL, Wang K (1993) Gel electrophoresis of giant proteins: solubilization and silver-staining of titin and nebulin from single muscle fiber segments. Electrophoresis 14(1–2):56–64PubMedCrossRefGoogle Scholar
  10. Greaser ML, Warren CM (2009) Efficient electroblotting of very large proteins using a vertical agarose electrophoresis system. Methods Mol Biol 536:221–227. doi: 10.1007/978-1-59745-542-8_24 PubMedCrossRefGoogle Scholar
  11. Greaser ML, Warren CM (2012) Protein electrophoresis in agarose gels for separating high molecular weight proteins. Methods Mol Biol 869:111–118. doi: 10.1007/978-1-61779-821-4_10 PubMedCrossRefGoogle Scholar
  12. Greaser ML, Krzesinski PR, Warren CM, Kirkpatrick B, Campbell KS, Moss RL (2005) Developmental changes in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of isoform transition. J Muscle Res Cell Motil 26(6–8):325–332PubMedGoogle Scholar
  13. Greaser ML, Warren CM, Esbona K, Guo W, Duan Y, Parrish AM, Krzesinski PR, Norman HS, Dunning S, Fitzsimons DP, Moss RL (2008) Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J Mol Cell Cardiol 44(6):983–991. doi: 10.1016/j.yjmcc.2008.02.272 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Guo W, Bharmal SJ, Esbona K, Greaser ML (2010) Titin diversity – alternative splicing gone wild. J Biomed Biotechnol 2010:753675. doi: 10.1155/2010/753675 PubMedPubMedCentralGoogle Scholar
  15. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM, Dauksaite V, Vakeel P, Klaassen S, Gerull B, Thierfelder L, Regitz-Zagrosek V, Hacker TA, Saupe KW, Dec GW, Ellinor PT, MacRae CA, Spallek B, Fischer R, Perrot A, Özcelik C, Saar K, Hubner N, Gotthardt M (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18(5):766–773. doi: 10.1038/nm.2693 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Guo W, Pleitner JM, Saupe KW, Greaser ML (2013) Pathophysiological defects and transcriptional profiling in the RBM20−/− rat model. PLoS ONE 8(12):e84281. doi: 10.1371/journal.pone.0084281 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61(2):392–398PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hu DH, Kimura S, Maruyama K (1986) Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem 99(5):1485–1492PubMedCrossRefGoogle Scholar
  19. Kawamura Y, Ohtani Y, Maruyama K (1994) Biodiversity of the localization of the epitopes to connectin antibodies in the sarcomeres of lamprey, electric ray, and horse mackerel skeletal muscles. Tissue Cell 26(5):677–685PubMedCrossRefGoogle Scholar
  20. King NL, Kurth L (1980) SDS gel electrophoresis studies of connectin. In: Parry D, Creamer LK (eds) book: Fibrous proteins: scientific, industrial and medical aspects, vol 2. Academic, New York, pp 57–66Google Scholar
  21. Krüger M, Wright J, Wang K (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol 115(1):97–107PubMedCrossRefGoogle Scholar
  22. Krüger M, Kohl T, Linke WA (2006) Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291(2):H496–H506PubMedCrossRefGoogle Scholar
  23. Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234):293–296PubMedCrossRefGoogle Scholar
  24. Labeit S, Lahmers S, Burkart C, Fong C, McNabb M, Witt S, Witt C, Labeit D, Granzier H (2006) Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J Mol Biol 362(4):664–681PubMedCrossRefGoogle Scholar
  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar
  26. Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94(4):505–513PubMedCrossRefGoogle Scholar
  27. Li S, Guo W, Schmitt BM, Greaser ML (2012) Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats. J Cell Biochem 113(4):1265–1273. doi: 10.1002/jcb.23459 PubMedCrossRefGoogle Scholar
  28. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Rüegg JC, Gautel M (1997) Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73(2):905–919. doi: 10.1016/S0006-3495(97)78123-2 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95(7):708–716PubMedCrossRefGoogle Scholar
  30. Maruyama K (1976) Connectin, an elastic protein from myofibrils. J Biochem 80(2):405–407PubMedCrossRefGoogle Scholar
  31. Maruyama K, Natori R, Nonomura Y (1976) New elastic protein from muscle. Nature 262(5563):58–60PubMedCrossRefGoogle Scholar
  32. Maruyama K, Kimura S, Kuroda M, Handa S (1977a) Connectin, an elastic protein of muscle. Its abundance in cardiac myofibrils. J Biochem 82(2):347–350PubMedGoogle Scholar
  33. Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S (1977b) Connectin, an elastic protein of muscle. Characterization and function. J Biochem 82(2):317–337PubMedGoogle Scholar
  34. Maruyama K, Murakami F, Ohashi K (1977c) Connectin, an elastic protein of muscle. Comparative Biochemistry J Biochem 82(2):339–345PubMedGoogle Scholar
  35. Maruyama K, Kimura S, Ohashi K, Kuwano Y (1981) Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J Biochem 89(3):701–709PubMedCrossRefGoogle Scholar
  36. Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M (1984) Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem 95(5):1423–1433PubMedCrossRefGoogle Scholar
  37. Matsubara S, Maruyama K (1977) Role of connectin in the length-tension relation of skeletal and cardiac muscles. Jpn J Physiol 27(5):589–600PubMedCrossRefGoogle Scholar
  38. Mitsuhashi T, Kasai M, Hatae K (2002) Detection of giant myofibrillar proteins connectin and nebulin in fish meat by electrophoresis in 3-5 gradient sodium dodecyl sulfate polyacrylamide slab gels. J Agric Food Chem 50(26):7499–7503PubMedCrossRefGoogle Scholar
  39. Neagoe C (2008) Biochemical and mechanical investigation of cardiac titin isoforms. Doctor scientiarum humanarum (Dr. sc. hum.), Ruprecht-Karls-Universität, HeidelbergGoogle Scholar
  40. Neagoe C, Opitz CA, Makarenko I, Linke WA (2003) Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J Muscle Res Cell Motil 24(2–3):175–189PubMedCrossRefGoogle Scholar
  41. Okuneva AD, Vikhlyantsev IM, Shpagina MD, Rogachevskii VV, Khutzyan SS, Podlubnaya ZA, Grigoriev AI (2012) Changes in titin and myosin heavy chain isoform composition in skeletal muscles of mongolian gerbil (Meriones unguiculatus) after 12-day spaceflight. Biophysics 57(5):581–586CrossRefGoogle Scholar
  42. Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94(7):967–975PubMedCrossRefGoogle Scholar
  43. Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA (2005) Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 126(5):461–480PubMedPubMedCentralCrossRefGoogle Scholar
  44. Salmov NN, Vikhlyantsev IM, Ulanova AD, Gritsyna YV, Bobylev AG, Saveljev AP, Makariushchenko VV, Maksudov GY, Podlubnaya ZA (2015) Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia). Biochemistry (Mosc) 80(3):343–355. doi: 10.1134/S0006297915030098 CrossRefGoogle Scholar
  45. Somerville LL, Wang K (1981) The ultrasensitive silver “protein” stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun 102(1):53–58PubMedCrossRefGoogle Scholar
  46. Spierts IL, Akster HA, Granzier HL (1997) Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming. J Comp Physiol B 167(8):543–551PubMedCrossRefGoogle Scholar
  47. Tatsumi R, Hattori A (1995) Detection of giant myofibrillar proteins connectin and nebulin by electrophoresis in 2% polyacrylamide slab gels strengthened with agarose. Anal Biochem 224(1):28–31PubMedCrossRefGoogle Scholar
  48. Toyoda N, Maruyama K (1978) Fine structure of connectin nets in cardiac myofibrils. J Biochem 84(1):239–241PubMedCrossRefGoogle Scholar
  49. Trombitás K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79(6):3226–3234PubMedPubMedCentralCrossRefGoogle Scholar
  50. Udaka J, Ohmori S, Terui T, Ohtsuki I, Ishiwata S, Kurihara S, Fukuda N (2008) Disuse-induced preferential loss of the giant protein titin depresses muscle performance via abnormal sarcomeric organization. J Gen Physiol 131(1):33–41. doi: 10.1085/jgp.200709888 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ulanova A, Gritsyna Y, Vikhlyantsev I, Salmov N, Bobylev A, Abdusalamova Z, Rogachevsky V, Shenkman B, Podlubnaya Z (2015) Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight. Biomed Res Int 2015:104735. doi: 10.1155/2015/104735 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Vikhlyantsev IM, Podlubnaya ZA (2006) On the titin isoforms. Biophysics 51(5):842–848CrossRefGoogle Scholar
  53. Vikhlyantsev IM, Podlubnaya ZA (2008) Composition of titin isoforms of skeletal and cardiac muscles in pathologies. Biophysics 53(6):592–597CrossRefGoogle Scholar
  54. Vikhlyantsev IM, Podlubnaya ZA (2012) New titin (connectin) isoforms and their functional role in striated muscles of mammals: facts and suppositions. Biochemistry (Mosc) 77(13):1515–1535. doi: 10.1134/S0006297912130093 CrossRefGoogle Scholar
  55. Vikhlyantsev IM, Makarenko IV, Khalina IN, Udaltsov SN, Malyshev SL, Podlubnaya ZA (2000) Changes in the isoform composition of the cytoskeletal protein titin: adaptation process in hibernation. Biophysics 45(5):805–809Google Scholar
  56. Vikhlyantsev IM, Podlubnaya ZA, Kozlovskaya IB (2004a) New titin isoforms in skeletal muscles of mammals. Dokl Biochem Biophys 395:111–113PubMedCrossRefGoogle Scholar
  57. Vikhlyantsev IM, Malyshev SL, Shenkman BS, Podlubnaya ZA (2004b) Composition of the titin family proteins in skeletal muscle of ground squirrel during hibernation and rats in simulated microgravity. Biophysics 49(6):895–900Google Scholar
  58. Vikhlyantsev IM, Karaduleva EV, Podlubnaya ZA (2008) Seasonal changes in the composition of titin isoforms in muscles of hibernating ground squirrels. Biophysics 53(6):598–603CrossRefGoogle Scholar
  59. Vikhlyantsev IM, Okuneva AD, Shpagina MD, Shumilina YV, Molochkov NV, Salmov NN, Podlubnaya ZA (2011) Changes in isoform composition, structure, and functional properties of titin from Mongolian gerbil (Meriones unguiculatus) cardiac muscle after space flight. Biochemistry (Mosc) 76(12):1312–1320. doi: 10.1134/S0006297911120042 CrossRefGoogle Scholar
  60. Wang K (1982) Purification of titin and nebulin. Methods Enzymol 85(Pt B):264–274PubMedCrossRefGoogle Scholar
  61. Wang K (1985) Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis Cell Muscle Motil 6:315–369PubMedCrossRefGoogle Scholar
  62. Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107(6 Pt 1):2199–2212PubMedCrossRefGoogle Scholar
  63. Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A 76(8):3698–3702PubMedPubMedCentralCrossRefGoogle Scholar
  64. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci U S A 88(16):7101–7105PubMedPubMedCentralCrossRefGoogle Scholar
  65. Warren CM, Krzesinski PR, Greaser ML (2003a) Vertical agarose gel electrophoresis and electroblotting of high-molecular-weight proteins. Electrophoresis 24(11):1695–1702PubMedCrossRefGoogle Scholar
  66. Warren CM, Jordan MC, Roos KP, Krzesinski PR, Greaser ML (2003b) Titin isoform expression in normal and hypertensive myocardium. Cardiovasc Res 59(1):86–94PubMedCrossRefGoogle Scholar
  67. Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121(11):1301–1312PubMedCrossRefGoogle Scholar
  68. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244(16):4406–4412PubMedGoogle Scholar
  69. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H (2000) Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32(12):2151–2162PubMedCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.Pushchino State Institute of Natural SciencePushchinoRussia

Personalised recommendations