Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Software for molecular docking: a review

Abstract

Molecular docking methodology explores the behavior of small molecules in the binding site of a target protein. As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Docking against homology-modeled targets also becomes possible for proteins whose structures are not known. With the docking strategies, the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes. Molecular docking programs perform a search algorithm in which the conformation of the ligand is evaluated recursively until the convergence to the minimum energy is reached. Finally, an affinity scoring function, ΔG [U total in kcal/mol], is employed to rank the candidate poses as the sum of the electrostatic and van der Waals energies. The driving forces for these specific interactions in biological systems aim toward complementarities between the shape and electrostatics of the binding site surfaces and the ligand or substrate.

This is a preview of subscription content, log in to check access.

References

  1. Alberg DG, Schreiber SL (1993) Structure-based design of a cyclophilin–calcineurin bridging ligand. Science 262:248–250

  2. Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156. doi:10.1002/jcc.23905

  3. Bajaj CL, Chowdhury R, Siddahanavalli V (2011) F2Dock: fast Fourier protein–protein docking. IEEE/ACM Trans Comput Biol Bioinform 8:45–58. doi:10.1109/TCBB.2009.57

  4. Banitt I, Wolfson HJ (2011) ParaDock: a flexible non-specific DNA—rigid protein docking algorithm. Nucleic Acids Res 39, e135. doi:10.1093/nar/gkr620

  5. Berman HM, Battistuz T, Bhat TN et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907

  6. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

  7. Bodian DL, Yamasaki RB, Buswell RL, Stearns JF, White JM, Kuntz ID (1993) Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 32:2967–2978

  8. Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78

  9. Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401

  10. Brooks BR, Brooks CL, MacKerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. doi:10.1002/jcc.21287

  11. Bruccoleri RE, Karplus M (1990) Conformational sampling using high-temperature molecular dynamics. Biopolymers 29:1847–1862. doi:10.1002/bip.360291415

  12. Bursulaya BD, Totrov M, Abagyan R, Brooks CL 3rd (2003) Comparative study of several algorithms for flexible ligand docking. J Comput Aided Mol Des 17:755–763

  13. Caflisch A, Miranker A, Karplus M (1993) Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. J Med Chem 36:2142–2167

  14. Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014. doi:10.1110/ps.03154503

  15. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87. doi:10.1002/prot.10389

  16. Chen H, Lyne PD, Giordanetto F, Lovell T, Li J (2006) On evaluating molecular-docking methods for pose prediction and enrichment factors. J Chem Inf Model 46:401–415. doi:10.1021/ci0503255

  17. Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY (2007) SODOCK: swarm optimization for highly flexible protein–ligand docking. J Comput Chem 28:612–623. doi:10.1002/jcc.20542

  18. Cheng TM, Blundell TL, Fernandez-Recio J (2008) Structural assembly of two-domain proteins by rigid-body docking. BMC Bioinformatics 9:441. doi:10.1186/1471-2105-9-441

  19. Corbeil CR, Williams CI, Labute P (2012) Variability in docking success rates due to dataset preparation. J Comput Aided Mol Des 26:775–786. doi:10.1007/s10822-012-9570-1

  20. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48:962–976. doi:10.1021/jm049798d

  21. de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897. doi:10.1038/nprot.2010.32

  22. Debnath AK, Radigan L, Jiang S (1999) Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem 42:3203–3209. doi:10.1021/jm990154t

  23. DeLuca S, Khar K, Meiler J (2015) Fully flexible docking of medium sized ligand libraries with RosettaLigand. PLoS One 10:e0132508. doi:10.1371/journal.pone.0132508

  24. Desmet J, De Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542

  25. Dixon JS (1997) Evaluation of the CASP2 docking section. Proteins 29(Suppl 1):198–204

  26. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. doi:10.1021/ja026939x

  27. Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19:199–221. doi:10.1002/prot.340190305

  28. Fernández-Recio J, Totrov M, Abagyan R (2002) Soft protein–protein docking in internal coordinates. Protein Sci 11:280–291

  29. Fischer D, Norel R, Wolfson H, Nussinov R (1993) Surface motifs by a computer vision technique: searches, detection, and implications for protein–ligand recognition. Proteins 16:278–292. doi:10.1002/prot.340160306

  30. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

  31. Fu Y, Wu XJ, Chen ZG, Sun J, Zhao J, Xu WB (2015) A new approach for flexible molecular docking based on swarm intelligence. Math Probl Eng. doi:10.1155/2015/540186

  32. Gardiner EJ, Willett P, Artymiuk PJ (2001) Protein docking using a genetic algorithm. Proteins 44:44–56

  33. Gardiner EJ, Willett P, Artymiuk PJ (2003) GAPDOCK: a genetic algorithm approach to protein docking in CAPRI round 1. Proteins 52:10–14. doi:10.1002/prot.10386

  34. Garzon JI, Lopéz-Blanco JR, Pons C et al (2009) FRODOCK: a new approach for fast rotational protein–protein docking. Bioinformatics 25:2544–2551. doi:10.1093/bioinformatics/btp447

  35. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

  36. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202. doi:10.1002/prot.340080302

  37. Gu J, Yang X, Kang L, Wu J, Wang X (2015) MoDock: a multi-objective strategy improves the accuracy for molecular docking. Algorithms Mol Biol 10:8. doi:10.1186/s13015-015-0034-8

  38. Hammes GG (2002) Multiple conformational changes in enzyme catalysis. Biochemistry 41:8221–8228

  39. Harrison SJ, Guidolin A, Faast R et al (2002) Efficient generation of alpha(1,3) galactosyltransferase knockout porcine fetal fibroblasts for nuclear transfer. Transgenic Res 11:143–150

  40. Heifetz A, Katchalski-Katzir E, Eisenstein M (2002) Electrostatics in protein–protein docking. Protein Sci 11:571–587

  41. Hu X, Balaz S, Shelver WH (2004) A practical approach to docking of zinc metalloproteinase inhibitors. J Mol Graph Model 22:293–307. doi:10.1016/j.jmgm.2003.11.002

  42. Hurwitz N, Schneidman-Duhovny D, Wolfson HJ (2016) Memdock: an alpha-helical membrane protein docking algorithm. Bioinformatics 32:2444–2450. doi:10.1093/bioinformatics/btw184

  43. Jackson RM, Sternberg MJ (1995) A continuum model for protein–protein interactions: application to the docking problem. J Mol Biol 250:258–275. doi:10.1006/jmbi.1995.0375

  44. Jackson RM, Gabb HA, Sternberg MJ (1998) Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol 276:265–285. doi:10.1006/jmbi.1997.1519

  45. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511. doi:10.1021/jm020406h

  46. Jiang F, Kim SH (1991) “Soft docking”: matching of molecular surface cubes. J Mol Biol 219:79–102

  47. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

  48. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

  49. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199

  50. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242. doi:10.1002/prot.20149

  51. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. doi:10.1126/science.220.4598.671

  52. Kohlbacher O, Lenhof HP (2000) BALL—rapid software prototyping in computational molecular biology. Bioinform 16:815–824

  53. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565. doi:10.1021/jm0302997

  54. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein–ligand docking with PLANTS. J Chem Inf Model 49:84–96. doi:10.1021/ci800298z

  55. Koshland DE Jr (1963) Correlation of structure and function in enzyme action. Science 142:1533–1541

  56. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406. doi:10.1002/prot.21117

  57. Kozakov D, Beglov D, Bohnuud T et al (2013) How good is automated protein docking? Proteins 81:2159–2166. doi:10.1002/prot.24403

  58. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288

  59. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13:323–330

  60. Lawrence MC, Davis PC (1992) CLIX: a search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure. Proteins 12:31–41. doi:10.1002/prot.340120105

  61. Leach AR (1994) Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol 235:345–356

  62. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095. doi:10.1002/prot.24428

  63. Levitt DG, Banaszak LJ (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10:229–234

  64. Lewis RA, Dean PM (1989a) Automated site-directed drug design: the concept of spacer skeletons for primary structure generation. Proc R Soc Lond Ser B Biol Sci 236:125–140

  65. Lewis RA, Dean PM (1989b) Automated site-directed drug design: the formation of molecular templates in primary structure generation. Proc R Soc Lond Ser B Biol Sci 236:141–162

  66. Li N, Sun Z, Jiang F (2007) SOFTDOCK application to protein–protein interaction benchmark and CAPRI. Proteins 69:801–808. doi:10.1002/prot.21728

  67. Li X, Li Y, Cheng T, Liu Z, Wang R (2010) Evaluation of the performance of four molecular docking programs on a diverse set of protein–ligand complexes. J Comput Chem 31:2109–2125. doi:10.1002/jcc.21498

  68. Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y (2013) FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 34:67–75. doi:10.1002/jcc.23108

  69. Mandell JG, Roberts VA, Pique ME et al (2001) Protein docking using continuum electrostatics and geometric fit. Protein Eng 14:105–113

  70. Matsuzaki Y, Ohue M, Uchikoga N, Akiyama Y (2014) Protein–protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis. Protein Pept Lett 21:790–798

  71. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68:76–90. doi:10.1002/bip.10207

  72. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341

  73. Mezei M (2003) A new method for mapping macromolecular topography. J Mol Graph Model 21:463–472

  74. Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8:153–174

  75. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29–34. doi:10.1002/prot.340110104

  76. Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11:314–328. doi:10.1002/prot.340110409

  77. Namasivayam V, Günther R (2007) pso@autodock: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70:475–484. doi:10.1111/j.1747-0285.2007.00588.x

  78. Ng MC, Fong S, Siu SW (2015) PSOVina: the hybrid particle swarm optimization algorithm for protein–ligand docking. J Bioinform Comput Biol 13:1541007. doi:10.1142/S0219720015410073

  79. Nishibata Y, Itai A (1993) Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation. J Med Chem 36:2921–2928

  80. Novotny J, Bruccoleri RE, Saul FA (1989) On the attribution of binding energy in antigen–antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry 28:4735–4749

  81. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y (2014a) MEGADOCK: an all-to-all protein–protein interaction prediction system using tertiary structure data. Protein Pept Lett 21:766–778

  82. Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y (2014b) MEGADOCK 4.0: an ultra-high-performance protein–protein docking software for heterogeneous supercomputers. Bioinformatics 30:3281–3283. doi:10.1093/bioinformatics/btu532

  83. Onodera K, Satou K, Hirota H (2007) Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 47:1609–1618. doi:10.1021/ci7000378

  84. Österberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40

  85. O’Sullivan D, Arrhenius T, Sidney JO et al (1991) On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 147:2663–2669

  86. Palma PN, Krippahl L, Wampler JE, Moura JJ (2000) BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 39:372–384

  87. Paul N, Rognan D (2002) ConsDock: a new program for the consensus analysis of protein–ligand interactions. Proteins 47:521–533. doi:10.1002/prot.10119

  88. Pellegrini M, Doniach S (1993) Computer simulation of antibody binding specificity. Proteins 15:436–444. doi:10.1002/prot.340150410

  89. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56:235–249. doi:10.1002/prot.20088

  90. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6:e24657. doi:10.1371/journal.pone.0024657

  91. Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755. doi:10.1002/jcc.21643

  92. Pons C, Grosdidier S, Solernou A, Pérez-Cano L, Fernández-Recio J (2010) Present and future challenges and limitations in protein–protein docking. Proteins 78:95–108. doi:10.1002/prot.22564

  93. Pons C, Jiménez-González D, González-Álvarez C et al (2012) Cell-Dock: high-performance protein–protein docking. Bioinformatics 28:2394–2396. doi:10.1093/bioinformatics/bts454

  94. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489. doi:10.1006/jmbi.1996.0477

  95. Ravikant DV, Elber R (2010) PIE—efficient filters and coarse grained potentials for unbound protein–protein docking. Proteins 78:400–419. doi:10.1002/prot.22550

  96. Ring CS, Sun E, McKerrow JH et al (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A 90:3583–3587

  97. Ritchie DW, Kemp GJ (2000) Protein docking using spherical polar Fourier correlations. Proteins 39:178–194

  98. Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405. doi:10.1093/bioinformatics/btq444

  99. Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. J Biol Chem 274:38051–38060

  100. Roberts VA, Thompson EE, Pique ME, Perez MS, Ten Eyck LF (2013) DOT2: macromolecular docking with improved biophysical models. J Comput Chem 34:1743–1758. doi:10.1002/jcc.23304

  101. Rotstein SH, Murcko MA (1993a) GenStar: a method for de novo drug design. J Comput Aided Mol Des 7:23–43

  102. Rotstein SH, Murcko MA (1993b) GroupBuild: a fragment-based method for de novo drug design. J Med Chem 36:1700–1710

  103. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N et al (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10, e1003571. doi:10.1371/journal.pcbi.1003571

  104. Sauton N, Lagorce D, Villoutreix BO, Miteva MA (2008) MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 9:184. doi:10.1186/1471-2105-9-184

  105. Schapira M, Abagyan R, Totrov M (2003) Nuclear hormone receptor targeted virtual screening. J Med Chem 46:3045–3059. doi:10.1021/jm0300173

  106. Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA (1998) Screening a peptidyl database for potential ligands to proteins with side-chain flexibility. Proteins 33:74–87

  107. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. doi:10.1093/nar/gki481

  108. Shin WH, Seok C (2012) GalaxyDock: protein–ligand docking with flexible protein side-chains. J Chem Inf Model 52:3225–3232. doi:10.1021/ci300342z

  109. Shoichet BK, Kuntz ID (1991) Protein docking and complementarity. J Mol Biol 221:327–346

  110. Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM (1993) Structure-based discovery of inhibitors of thymidylate synthase. Science 259:1445–1450

  111. Smith JA, Edwards SJ, Moth CW, Lybrand TP (2013) TagDock: an efficient rigid body docking algorithm for oligomeric protein complex model construction and experiment planning. Biochemistry 52:5577–5584. doi:10.1021/bi400158k

  112. Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Umeyama H (2007) The SKE-DOCK server and human teams based on a combined method of shape complementarity and free energy estimation. Proteins 69:866–872. doi:10.1002/prot.21772

  113. Tøndel K, Anderssen E, Drabløs F (2006) Protein Alpha Shape (PAS) Dock: a new Gaussian-based score function suitable for docking in homology modelled protein structures. J Comput Aided Mol Des 20:131–144. doi:10.1007/s10822-006-9041-7

  114. Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein–protein docking. Bioinformatics 29:807–809. doi:10.1093/bioinformatics/btt038

  115. Totrov M, Abagyan R (1994) Detailed ab initio prediction of lysozyme–antibody complex with 1.6 Å accuracy. Nat Struct Mol Biol 1:259–263

  116. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

  117. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307

  118. Venkatraman V, Ritchie DW (2012) Flexible protein docking refinement using pose-dependent normal mode analysis. Proteins 80:2262–2274. doi:10.1002/prot.24115

  119. Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein–protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics 10:407. doi:10.1186/1471-2105-10-407

  120. Verkhivker GM, Bouzida D, Gehlhaar DK et al (2000) Deciphering common failures in molecular docking of ligand–protein complexes. J Comput Aided Mol Des 14:731–751

  121. Verlinde CL, Rudenko G, Hol WG (1992) In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J Comput Aided Mol Des 6:131–147

  122. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975. doi:10.1039/c6cp01555g

  123. Warren GL, Andrews CW, Capelli AM et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931. doi:10.1021/jm050362n

  124. Wass MN, Fuentes G, Pons C, Pazos F, Valencia A (2011) Towards the prediction of protein interaction partners using physical docking. Mol Syst Biol 7:469. doi:10.1038/msb.2011.3

  125. Wiehe K, Pierce B, Mintseris J et al (2005) ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 60:207–213. doi:10.1002/prot.20559

  126. Wolfson HJ, Nussinov R (2000) Geometrical docking algorithms: a practical approach. Methods Mol Biol 143:377–397. doi:10.1385/1-59259-368-2:377

  127. Yue SY (1990) Distance-constrained molecular docking by simulated annealing. Protein Eng 4:177–184

  128. Zhang C, Lai L (2011) SDOCK: a global protein–protein docking program using stepwise force-field potentials. J Comput Chem 32:2598–2612. doi:10.1002/jcc.21839

  129. Zhao H, Caflisch A (2013) Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg Med Chem Lett 23:5721–5726. doi:10.1016/j.bmcl.2013.08.009

  130. Zhao Y, Sanner MF (2007) FLIPDock: docking flexible ligands into flexible receptors. Proteins 68:726–737. doi:10.1002/prot.21423

Download references

Author information

Correspondence to Nataraj S. Pagadala.

Ethics declarations

Conflict of interest

Nataraj S. Pagadala declares that he has no conflict of interest. Khajamohiddin Syed declares that he has no conflict of interest. Jack Tuszynski declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagadala, N.S., Syed, K. & Tuszynski, J. Software for molecular docking: a review. Biophys Rev 9, 91–102 (2017). https://doi.org/10.1007/s12551-016-0247-1

Download citation

Keywords

  • Rigid body docking
  • Flexible docking
  • Docking accuracy