Advertisement

Biophysical Reviews

, Volume 8, Issue 4, pp 409–427 | Cite as

Dynamic light scattering: a practical guide and applications in biomedical sciences

  • Jörg Stetefeld
  • Sean A. McKenna
  • Trushar R. Patel
Review

Abstract

Dynamic light scattering (DLS), also known as photon correlation spectroscopy (PCS), is a very powerful tool for studying the diffusion behaviour of macromolecules in solution. The diffusion coefficient, and hence the hydrodynamic radii calculated from it, depends on the size and shape of macromolecules. In this review, we provide evidence of the usefulness of DLS to study the homogeneity of proteins, nucleic acids, and complexes of protein–protein or protein–nucleic acid preparations, as well as to study protein–small molecule interactions. Further, we provide examples of DLS’s application both as a complementary method to analytical ultracentrifugation studies and as a screening tool to validate solution scattering models using determined hydrodynamic radii.

Keywords

Analytical ultracentrifuge Diffusion coefficient Dynamic light scattering Hydrodynamic radius Light scattering Protein–ligand interactions Protein–nucleic acid complexes Protein–protein complexes 

Notes

Acknowledgments

TRP acknowledges Manitoba Institute of Child Health (2008–10) and Canadian Institutes of Health Research (2010–12) for postdoctoral fellowship awards, and Marie Skłodowska-Curie Fellowship program (2013–15) for their financial support. JS holds a Canada Research Chair in Structure Biology and was supported by funding from NSERC. SAM is supported by NSERC Discovery grant (RGPIN-2015-06142). The authors congratulate Prof. Donald Winzor on his 80th birthday and thank him for his immense contributions in the development and applications of biophysical methods. Dr. Patel thanks Prof. Winzor for being his mentor. The authors thank Drs. Hall and Harding for an opportunity to contribute in a special issue “Analytical Quantitative Relations in Biochemistry”.

Compliance with ethical standards

Conflict of Interests

Jörg Stetefeld declares that he has no conflicts of interest. Sean A. McKenna declares that he has no conflicts of interest. Trushar R. Patel declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Amoros D, Ortega A, de la Torre JG (2011) Hydrodynamic properties of wormlike macromolecules: Monte Carlo simulation and global analysis of experimental data. Macromolecules 44:5788–5797. doi: 10.1021/ma102697q CrossRefGoogle Scholar
  2. Ariyo EO et al (2015) Biophysical Characterization of G-Quadruplex Recognition in the PITX1 mRNA by the Specificity Domain of the Helicase RHAU. PLoS One 10:e0144510. doi: 10.1371/journal.pone.0144510 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barnett CE (1942) Some applications of wave-length turbidimetry in the infrared. J Phys Chem 46:69–75. doi: 10.1021/j150415a009 CrossRefGoogle Scholar
  4. Benitez AA, Hernandez Cifre JG, Diaz Banos FG, de la Torre JG (2015). Prediction of solution properties and dynamics of RNAs by means of Brownian dynamics simulation of coarse-grained models: Ribosomal 5S RNA and phenylalanine transfer RNA. BMC Biophys 8:11 doi: 10.1186/s13628-015-0025-7 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berne BJ, Pecora R (1976) Dynamic light scattering: with applications to chemistry, biology, and physics. John Wiley & Sons, Inc, New York, USAGoogle Scholar
  6. Bloomfield VA (1981) Quasi-elastic light scattering applications in biochemistry and biology. Annu Rev Biophys Bioeng 10:421–450. doi: 10.1146/annurev.bb.10.060181.002225 CrossRefPubMedGoogle Scholar
  7. Bloomfield VA, Lim TK (1978) Quasi-elastic laser light scattering. Methods Enzymol 48:415–494CrossRefPubMedGoogle Scholar
  8. Breitkreutz D et al (2004) Inhibition of basement membrane formation by a nidogen-binding laminin gamma1-chain fragment in human skin-organotypic cocultures. J Cell Sci 117:2611–2622. doi: 10.1242/jcs.01127 CrossRefPubMedGoogle Scholar
  9. Brillouin L (1914) Light diffusion by a homogeneous transparent body. Cr Hebd Acad Sci 158:1331–1334Google Scholar
  10. Brillouin L (1922) Diffusion de la lumière et des rayons X par un corps transparent homogène, influence de l’agitation thermique. Annales de Physique (Paris) 17:88–122CrossRefGoogle Scholar
  11. Burchard W (1983) Static and dynamic light scattering from branched polymers and biopolymers. In: Light scattering from polymers. Springer, Berlin Heidelberg, pp 1–124. doi: 10.1007/3-540-12030-0_1 Google Scholar
  12. Burchard W (1992) Static and dynamic light scattering approaches to structure determination of biopolymers. In: Harding SE, Settele DB, Bloomfield VA (eds) Laser light scattering in biochemistry. Royal Society of Chemistry, Cambridge, pp 3–22Google Scholar
  13. Cabannes J, Rocard Y (1929) La diffusion moléculaire de la lumière, Vol 16 of Recueil des conférences-rapports de documentation sur la physique. Les Presses Universitaires de FranceGoogle Scholar
  14. Cummins HZ, Knable N, Yeh Y (1964) Observation of diffusion broadening of Rayleigh scattered light. Phys Rev Lett 12:150–153CrossRefGoogle Scholar
  15. Debye P (1915). Zerstreuung von Röntgenstrahlen. Annalen der Physik 351:809–823 doi: 10.1002/andp.19153510606 CrossRefGoogle Scholar
  16. Deo S et al (2015) Characterization of the termini of the West Nile virus genome and their interactions with the small isoform of the 2′ 5′-oligoadenylate synthetase family. J Struct Biol 190:236–249. doi: 10.1016/j.jsb.2015.04.005 CrossRefPubMedGoogle Scholar
  17. Deo S et al (2014) Activation of 2′ 5′-oligoadenylate synthetase by stem loops at the 5′-end of the West Nile virus genome. PLoS One 9:e92545. doi: 10.1371/journal.pone.0092545 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Donovan J, Dufner M, Korennykh A (2013) Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc Natl Acad Sci U S A 110:1652–1657. doi: 10.1073/pnas.1218528110 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dzananovic E et al (2014) Solution conformation of adenovirus virus associated RNA-I and its interaction with PKR. J Struct Biol 185:48–57. doi: 10.1016/j.jsb.2013.11.007 CrossRefPubMedGoogle Scholar
  20. Dzananovic E, Patel TR, Deo S, McEleney K, Stetefeld J, McKenna SA (2013).Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR. RNA 19:333–344 doi: 10.1261/rna.035931.112 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen Der Physik 322:132–148. doi: 10.1002/andp.19053220607 CrossRefGoogle Scholar
  22. Einstein A (1906). Zur Theorie der Brownschen Bewegung. Annalen Der Physik 324:371–381 doi: 10.1002/andp.19063240208 CrossRefGoogle Scholar
  23. Einstein A (1910) Theory of opalescence of homogenous liquids and liquid mixtures near critical conditions. Annalen Der Physik 33:1275–1298CrossRefGoogle Scholar
  24. Finsy R, Degroen P, Deriemaeker L, Gelade E, Joosten J (1992). Data Analysis of Multi-Angle Photon Correlation measurements without and with prior knowledge. Part Part Syst Char 9:237–251 doi: 10.1002/ppsc.19920090133 CrossRefGoogle Scholar
  25. Finsy R, Degroen P, Deriemaeker L, Vanlaethem M (1989) Singular value analysis and reconstruction of photon correlation data equidistant in time. J Chem Phys 91:7374–7383. doi: 10.1063/1.457260 CrossRefGoogle Scholar
  26. Foord R, Jakeman E, Oliver CJ, Pike ER, Blagrove RJ, Wood E, Peacocke AR (1970) Determination of diffusion coefficients of haemocyanin at low concentration by intensity fluctuation spectroscopy of scattered laser light. Nature 227:242. doi: 10.1038/227242a0 CrossRefPubMedGoogle Scholar
  27. Fujime S (1972) Quasi-elastic scattering of laser light. A new tool for the dynamic study of biological macromolecules. Adv Biophys 3:1–43PubMedGoogle Scholar
  28. Gans R (1921) Asymmetry of gas molecules — an article to determine the molecular form. Annalen Der Physik 65:97–123CrossRefGoogle Scholar
  29. Gans R (1923) The Tyndall effect in liquids. Z Phys 17:353–397. doi: 10.1007/bf01328695 CrossRefGoogle Scholar
  30. Garcia MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032–1060. doi: 10.1128/MMBR.00027-06 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gerl M, Mann K, Aumailley M, Timpl R (1991) Localization of a major nidogen-binding site to domain III of laminin B2 chain. Eur J Biochem 202:167–174CrossRefPubMedGoogle Scholar
  32. Gross E (1930) Change of wave-length of light due to elastic heat waves at scattering in liquids. Nature 126:201–202. doi: 10.1038/126201a0 CrossRefGoogle Scholar
  33. Harding SE (1999) Protein hydrodynamics. In: Allen G (ed) Protein: a comprehensive treatise, vol 2. JAI Press, Greenwich, CT, pp 271–305Google Scholar
  34. Harding SE, Jumel K (1998) Light scattering. In: Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (eds) Current protocols in protein science. John Wiley & Sons, Inc., New York.  10.1002/0471140864.ps0708s11 Google Scholar
  35. Harvey JD (1973) Diffusion coefficients and hydrodynamic radii of three spherical RNA viruses by laser light scattering. Virology 56:365–368. doi: 10.1016/0042-6822(73)90313-9 CrossRefPubMedGoogle Scholar
  36. Hassan PA, Kulshreshtha SK (2006) Modification to the cumulant analysis of polydispersity in quasielastic light scattering data. J Colloid Interf Sci 300:744–748. doi: 10.1016/j.jcis.2006.04.013 CrossRefGoogle Scholar
  37. Hilgenberg LG, Su H, Gu H, O’Dowd DK, Smith MA (2006) Alpha3Na+/K+−ATPase is a neuronal receptor for agrin. Cell 125:359–369. doi: 10.1016/j.cell.2006.01.052 CrossRefPubMedGoogle Scholar
  38. Hoover CL, Hilgenberg LG, Smith MA (2003) The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons. J Cell Biol 161:923–932. doi: 10.1083/jcb.200301013 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hovanessian AG, Justesen J (2007) The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89:779–788. doi: 10.1016/j.biochi.2007.02.003 CrossRefPubMedGoogle Scholar
  40. Hsieh JC, Wu C, Chung AE (1994) The binding of fibronectin to entactin is mediated through the 29 kDa amino terminal fragment of fibronectin and the G2 domain of entactin. Biochem Biophys Res Commun 199:1509–1517. doi: 10.1006/bbrc.1994.1402 CrossRefPubMedGoogle Scholar
  41. ISO (2008) Particle size analysis — dynamic light scattering (DLS), 22412 International Standards Organization. https://www.iso.org/obp/ui/ - iso:std:iso:22412:en. Accessed July 2016
  42. Jakeman E, Pike ER (1969) Spectrum of clipped photon-counting fluctuations of gaussian light. J Phys Part Gen 2:411. doi: 10.1088/0305-4470/2/3/021 Google Scholar
  43. Jamieson AM, Downs CE, Walton AG (1972) Studies of elastin coacervation by quasielastic light scattering. Biochim Biophys Acta 271:34–47. doi: 10.1016/0005-2795(72)90130-4 CrossRefPubMedGoogle Scholar
  44. Khan AA, Bose C, Yam LS, Soloski MJ, Rupp F (2001) Physiological regulation of the immunological synapse by agrin. Science 292:1681–1686. doi: 10.1126/science.1056594 CrossRefPubMedGoogle Scholar
  45. Kim I, McKenna SA, Viani Puglisi E, Puglisi JD (2007) Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13:289–294. doi: 10.1261/rna.342607 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57:4814. doi: 10.1063/1.1678153 CrossRefGoogle Scholar
  47. Kuratomi Y, Nomizu M, Tanaka K, Ponce ML, Komiyama S, Kleinman HK, Yamada Y (2002) Laminin gamma 1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16-F10 mouse melanoma cells. Br J Cancer 86:1169–1173. doi: 10.1038/sj.bjc.6600187 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Landau LD, Placzek G (1934).Struktur der unverschobenen Streulinie. Z Phys Sowjetunion 5:172–173Google Scholar
  49. Livesey AK, Licinio P, Delaye M (1986) Maximum entropy analysis of quasielastic light scattering from colloidal dispersions. J Chem Phys 84:5102–5107. doi: 10.1063/1.450663 CrossRefGoogle Scholar
  50. Lorber B, Fischer F, Bailly M, Roy H, Kern D (2012) Protein analysis by dynamic light scattering: methods and techniques for students. Biochem Mol Biol Educ 40:372–382. doi: 10.1002/bmb.20644 CrossRefPubMedGoogle Scholar
  51. Malvern Instruments (2014) TN101104 Intensity Volume Number. Malvern Instruments Limited. http://www.malvern.com/en/pdf/secure/TN101104IntensityVolumeNumber.pdf. Accessed July 2016
  52. Mascarenhas JB, Ruegg MA, Winzen U, Halfter W, Engel J, Stetefeld J (2003) Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). EMBO J 22:529–536. doi: 10.1093/emboj/cdg041 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mayer U et al (1993) A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J 12:1879–1885PubMedPubMedCentralGoogle Scholar
  54. McKenna SA, Lindhout DA, Shimoike T, Puglisi JD (2007) Biophysical and biochemical investigations of dsRNA-activated kinase PKR. Methods Enzymol 430:373–396. doi: 10.1016/S0076-6879(07)30014-1 CrossRefPubMedGoogle Scholar
  55. Meier M et al (2013) Binding of G-quadruplexes to the N-terminal recognition domain of the RNA helicase associated with AU-rich element (RHAU). J Biol Chem 288:35014–35027. doi: 10.1074/jbc.M113.512970 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Meng H, Deo S, Xiong S, Dzananovic E, Donald LJ, van Dijk CW, McKenna SA (2012) Regulation of the interferon-inducible 2′-5′-oligoadenylate synthetases by adenovirus VA(I) RNA. J Mol Biol 422:635–649. doi: 10.1016/j.jmb.2012.06.017 CrossRefPubMedGoogle Scholar
  57. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. doi: 10.1002/andp.19083300302 CrossRefGoogle Scholar
  58. Morrison ID, Grabowski EF, Herb CA (1985). Improved techniques for particle size determination by quasi-elastic light scattering. Langmuir 1:496–501 doi: 10.1021/la00064a016 CrossRefGoogle Scholar
  59. Nieuwenhuysen P, Clauwaert J (1981) Quasi-elastic light scattering of Artemia ribosomes sedimented in a CsCl density gradient. J Biochem Biophys Methods 5:279–286CrossRefPubMedGoogle Scholar
  60. Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478CrossRefPubMedGoogle Scholar
  61. Nobbmann U et al (2007) Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol Genet Eng Rev 24:117–128. doi: 10.1080/02648725.2007.10648095 CrossRefPubMedGoogle Scholar
  62. Nyeo SL, Chu B (1989). Maximum-entropy analysis of photon correlation spectroscopy data. Macromolecules 22:3998–4009 doi: 10.1021/ma00200a031 CrossRefGoogle Scholar
  63. Ortega A, Amoros D, Garcia de la Torre J (2011). Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties. Methods 54:115–123. doi: 10.1016/j.ymeth.2010.12.004 CrossRefPubMedGoogle Scholar
  64. Ortega A, Amoros D, Garcia de la Torre J (2011a) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898. doi: 10.1016/j.bpj.2011.06.046 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ortega A, Garcia de la Torre J (2007) Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility. Biomacromolecules 8:2464–2475. doi: 10.1021/bm700473f CrossRefPubMedGoogle Scholar
  66. Ostrowsky N, Sornette D, Parker P, Pike ER (1981) Exponential sampling method for light scattering polydispersity analysis. Opt Acta 28:1059–1070CrossRefGoogle Scholar
  67. Patel TR, Bernards C, Meier M, McEleney K, Winzor DJ, Koch M, Stetefeld J (2014) Structural elucidation of full-length nidogen and the laminin–nidogen complex in solution. Matrix Biol 33:60–67. doi: 10.1016/j.matbio.2013.07.009 CrossRefPubMedGoogle Scholar
  68. Patel TR, Meier M, Li J, Morris G, Rowe AJ, Stetefeld J (2011) T-shaped arrangement of the recombinant agrin G3-IgG Fc protein. Protein Sci 20:931–940. doi: 10.1002/pro.628 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Patel TR et al (2010) Nano-structure of the laminin gamma-1 short arm reveals an extended and curved multidomain assembly. Matrix Biol 29:565–572. doi: 10.1016/j.matbio.2010.07.004 CrossRefPubMedGoogle Scholar
  70. Patel TR, Reuten R, Xiong S, Meier M, Winzor DJ, Koch M, Stetefeld J (2012) Determination of a molecular shape for netrin-4 from hydrodynamic and small angle X-ray scattering measurements. Matrix Biol 31:135–140. doi: 10.1016/j.matbio.2011.11.004 CrossRefPubMedGoogle Scholar
  71. Pecora R (1964) Doppler shifts in light scattering from pure liquids and polymer solutions. J Chem Phys 40:1604. doi: 10.1063/1.1725368 CrossRefGoogle Scholar
  72. Pecora R (1972) Quasi-elastic light scattering from macromolecules. Annu Rev Biophys Bioeng 1:257–276. doi: 10.1146/annurev.bb.01.060172.001353 CrossRefPubMedGoogle Scholar
  73. Pike ER (1972) The accuracy of diffusion-constant measurements by digital autocorrelation of photon-counting fluctuations. Journal de Physique Colloques 33:C1-177–C171-180. doi: 10.1051/jphyscol:1972132 Google Scholar
  74. Provencher SW (1982a) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–227. doi: 10.1016/0010-4655(82)90173-4 CrossRefGoogle Scholar
  75. Provencher SW (1982b) CONTIN: A general purpose constrained regularization programm for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242. doi: 10.1016/0010-4655(82)90174-6 CrossRefGoogle Scholar
  76. Provencher SW, Stepanek P (1996) Global analysis of dynamic light scattering autocorrelation functions. Part Part Syst Char 13:291–294. doi: 10.1002/ppsc.19960130507 CrossRefGoogle Scholar
  77. Pusey PN (1972) Correlation and light beating spectroscopy. In: Cummings HZ, Pike ER (eds) Photon correlation and light beating spectroscopy, Plenum, New York, pp 387–428Google Scholar
  78. Pyun JA, Cha DH, Kwack K (2012) LAMC1 gene is associated with premature ovarian failure. Maturitas 71:402–406. doi: 10.1016/j.maturitas.2012.01.011 CrossRefPubMedGoogle Scholar
  79. Raltson G (1993) Introduction to analytical ultracentrifugation. Beckman Instruments, Inc., Fullerton CAGoogle Scholar
  80. Rimai L, Hichmott JT Jr, Carew EB, Cole T (1970) Quasi-elastic light scattering by diffusional fluctuations in RNase solutions. Biophys J 10:20–37. doi: 10.1016/S0006-3495(70)86283-X CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sasaki T, Gohring W, Pan TC, Chu ML, Timpl R (1995a) Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol 254:892–899. doi: 10.1006/jmbi.1995.0664 CrossRefPubMedGoogle Scholar
  82. Sasaki T, Kostka G, Gohring W, Wiedemann H, Mann K, Chu ML, Timpl R (1995b) Structural characterization of two variants of fibulin-1 that differ in nidogen affinity. J Mol Biol 245:241–250CrossRefPubMedGoogle Scholar
  83. Schneiders FI et al (2007) Binding of netrin-4 to laminin short arms regulates basement membrane assembly. J Biol Chem 282:23750–23758. doi: 10.1074/jbc.M703137200 CrossRefPubMedGoogle Scholar
  84. Schurr JM (1977) Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 4:371–431. doi: 10.3109/10409237709105461 CrossRefPubMedGoogle Scholar
  85. Scott DJ, Patel TR, Besong DMT, Stetefeld J, Winzor DJ (2011) Examination of the discrepancy between size estimates for ovalbumin from small-angle X-ray scattering and other physicochemical measurements. J Phys Chem B 115:10725–10729. doi: 10.1021/jp2006149 CrossRefPubMedGoogle Scholar
  86. Serdyuk IN, Zaccai NR, Zaccai J (2007) Methods in Molecular Biophysics : Structure, Dynamics, Function. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  87. Siegert AJF (1949) On the fluctuations in signals returned by many independently moving scatterers. Massachusetts Institute of Technology, Radiation Laboratory Report, 465. MIT, CambridgeGoogle Scholar
  88. Stetefeld J et al (2004) Modulation of agrin function by alternative splicing and Ca2+ binding. Structure 12:503–515. doi: 10.1016/j.str.2004.02.001 CrossRefPubMedGoogle Scholar
  89. Stetefeld J et al (2001) The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nat Struct Biol 8:705–709. doi: 10.1038/90422 CrossRefPubMedGoogle Scholar
  90. Stokes GG (1845) On the theories of internal friction of fluids in motion. Trans Cam Philos Soc 8:287–305Google Scholar
  91. Strutt JW (1871a) LVIII. On the scattering of light by small particles. Philos Mag Ser 4(41):447–454. doi: 10.1080/14786447108640507 Google Scholar
  92. Strutt JW (1871b) XXXVI. On the light from the sky, its polarization and colour. Philos Mag Ser 4(41):274–279. doi: 10.1080/14786447108640479 Google Scholar
  93. Sutherland W (1905) LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos Mag Ser 6(9):781–785. doi: 10.1080/14786440509463331 CrossRefGoogle Scholar
  94. Svedberg T, Pedersen KO (1940) The ultracentrifuge. Oxford University Press, OxfordGoogle Scholar
  95. Tanford C (1961) Physical chemistry of macromolecules. John Wiley & Sons, Inc., New York. doi: 10.1002/jps.2600510233 Google Scholar
  96. Tyndall J (1868). On the Blue Colour of the Sky, the Polarization of Skylight, and on the Polarization of Light by Cloudy Matter Generally. Proceedings of the Royal Society of London 17:223–233 doi: 10.1098/rspl.1868.0033 CrossRefGoogle Scholar
  97. v. Smoluchowski M (1908).Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen. Annalen der Physik 330:205–226 doi: 10.1002/andp.19083300203 CrossRefGoogle Scholar
  98. Vadlamani G et al (2015) The beta-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. J Biol Chem 290:2630–2643. doi: 10.1074/jbc.M114.618199 CrossRefPubMedGoogle Scholar
  99. Van Holde KE (1970) Physical characterization of the protein molecule. Mol Biol Biochem Biophys 8:2–24PubMedGoogle Scholar
  100. Wyatt PJ (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272:1–40. doi: 10.1016/0003-2670(93)80373-S CrossRefGoogle Scholar
  101. Zakharov P, Scheffold F (2009) Advances in dynamic light scattering techniques. In: Kokhanovsky A (ed) Light scattering reviews 4: single light scattering and radiative transfer. Springer, Berlin Heidelberg, pp 433–467.  10.1007/978-3-540-74276-0_8 CrossRefGoogle Scholar
  102. Zimm BH (1945) Molecular theory of the scattering of light in fluids. J Chem Phys 13:141–145. doi: 10.1063/1.1724013 CrossRefGoogle Scholar
  103. Zimm BH (1948) Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J Chem Phys 16:1099–1116. doi: 10.1063/1.1746740 CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ManitobaWinnipegCanada
  2. 2.Department of Biochemistry and Medical GeneticsUniversity of ManitobaWinnipegCanada
  3. 3.School of BiosciencesUniversity of BirminghamBirminghamUK
  4. 4.Alberta RNA Research and Training Institute, Department of Chemistry & BiochemistryUniversity of LethbridgeLethbridgeCanada

Personalised recommendations