Biophysical Reviews

, Volume 6, Issue 1, pp 111–118 | Cite as

IL-4: an important cytokine in determining the fate of T cells

  • J. L. Silva-Filho
  • C. Caruso-Neves
  • A. A. S. Pinheiro


The pleiotropic effect of cytokines has been well documented, but the effects triggered by unique cytokines in different T cell types are still under investigation. The most relevant findings on the influence of interleukin-4 (IL-4) on T cell activation, differentiation, proliferation, and survival of different T cell types are discussed in this review. The main aim of our study was to correlate the observed effect with the corresponding molecular mechanism induced on IL-4/IL-4R interaction, in an effort to understand how the same extracellular stimuli can trigger a wide spectrum of signaling pathways leading to different responses in each T cell type.


T cells Interleukin-4 Survival Differentiation Activation 



We thank Mr. Shanserley Leite do Espírito Santo and Mr. Mario Luiz da Silva Bandeira (Fundo de Amparo à Pesquisa do Estado do Rio de Janeiro–FAPERJ TCT fellowships) for excellent support.

Conflict of interest


Human and animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Baron U, Floess S, Wieczorek G, Baumann K, Grützkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Türbachova I, Hamann A, Olek S, Huehn J (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37:2378–2389CrossRefPubMedGoogle Scholar
  2. Bennett BL, Cruz R, Lacson RG, Manning AM (1997) Interleukin-4 suppression of tumor necrosis factor alpha-stimulated E-selectin gene transcription is mediated by STAT-6 antagonism of NF-kappaB. J Biol Chem 272:10212–10219CrossRefPubMedGoogle Scholar
  3. Bot A, Holz A, Christen U, Wolfe T, Temann A, Flavell R, vonHerrath M (2000) Local IL-4 expression in the lung reduces pulmonary influenza-virus-specific secondary cytotoxicity T cell responses. Virology 269:66–77CrossRefPubMedGoogle Scholar
  4. Carter LL, Dutton RW (1995) Relative perforin- and Fas-mediated lysis in T1 and T2 CD8 effector populations. J Immunol 155:1028PubMedGoogle Scholar
  5. Carvalho LH, Sano G, Hafalla JC, Morrot A, Curotto de Lafaille MA, Zavala F (2002) IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med 8:166–170CrossRefPubMedGoogle Scholar
  6. Cerwenka A, Carter LL, Reome JB, Swain JB, Dutton RW (1998) In vivo persistence of CD8 polarized T cell subsets producing type 1 or type 2 cytokines. J Immunol 161:97PubMedGoogle Scholar
  7. Chen XH, Patel BKR, Wang LM, Frankel M, Ellmore N, Flavell RA, LaRochelle WJ, Pierce JH (1997) Jak1 expression is required for mediating interleukin-4 induced tyrosine phosphorylation of insulin receptor substrate and state signaling molecules. J Biol Chem 272:6556–6560CrossRefPubMedGoogle Scholar
  8. Chen Z, Lund R, Aittokallio T, Kosonen M, Nevalainen O, Lahesmaa R (2003) Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. J Immunol 171:3627–3635PubMedGoogle Scholar
  9. Coffman RL, Ohara J, Bond MW, Carty J, Zlotnik A, Paul WE (1986) B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 136:4538–4541PubMedGoogle Scholar
  10. Conticello C, Pedini F, Zeuner A, Patti M, Zerilli M, Stassi G, Messina A, Peschle C, De Maria R (2004) IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol 172:5467–77PubMedGoogle Scholar
  11. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+IL-10+Foxp3- effector T cells. Nat Immunol 9:1347–1355CrossRefPubMedCentralPubMedGoogle Scholar
  12. Defrance T, Aubry JP, Rousset F, Vanbervliet B, Bonnefoy JY, Arai N, Takebe Y, Yokota T, Lee F, Arai K et al (1987) Human recombinant interleukin 4 induces Fc epsilon receptors (CD23) on normal human B lymphocytes. J Exp Med 165:1459–1467CrossRefPubMedGoogle Scholar
  13. Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM (1997) Control of inflammation, cytokine expression, and germinal center formation by bcl-6. Science 276:589–592CrossRefPubMedGoogle Scholar
  14. Dong C, Flavell RA (2000) Control of T helper cell differentiation-in search of master genes. Sci STKE 49:1Google Scholar
  15. Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J, Capron A, Capron M (1994) Interleukin-5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med 179:703–708CrossRefPubMedGoogle Scholar
  16. Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, Bucher P (2001) DNA binding specificity of different STAT proteins: comparison of in vitro specificity with natural target sites. J Biol Chem 276:6675CrossRefPubMedGoogle Scholar
  17. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-gamma and interleukin-4 in response to Th1-stimulating and Th2-stimulating pathogens by gamma-delta T-cells in vivo. Nature 373:255–257CrossRefPubMedGoogle Scholar
  18. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse helper T cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med 170:2081CrossRefPubMedGoogle Scholar
  19. Gascan H, Gauchat JF, Roncarolo MG, Yssel H, Spits H, de Vries JE (1991) Human B cell clones can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by activated CD4+ T cell clones. J Exp Med 173:747–750CrossRefPubMedGoogle Scholar
  20. Goenka S, Youn J, Dzurek LM, Schindler U, Yu-Lee LY, Boothby M (1999) Paired Stat6 C-terminal transcription activation domains required both for inhibition of an IFN-responsive promoter and trans-activation. J Immunol 163:4663PubMedGoogle Scholar
  21. Helmich BK, Dutton RW (2001) The role of adoptively transferred CD8 T cells and host cells in the control of the growth of the EG7 thymoma: factors that determine the relative effectiveness and homing properties of Tc1 and Tc2 effectors. J Immunol 166:6500–8PubMedGoogle Scholar
  22. Howard M, Paul WE (1982) Interleukins for B lymphocytes. Lymphokine Res 1:1PubMedGoogle Scholar
  23. Kemp RA, Ronchese F (2001) Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol 167:6497–502PubMedGoogle Scholar
  24. Kienzle N, Buttigieg K, Groves P, Kawula T, Kelso A (2002) A clonal culture system demonstrates that IL-4 induces a subpopulation of noncytolytic T cells with low CD8, perforin, and granzyme expression. J Immunol 168:1672PubMedGoogle Scholar
  25. Kienzle N, Olver S, Buttigieg K, Groves P, Janas ML, Baz A, Kelso A (2005) Progressive differentiation and commitment of CD8+ T cells to a poorly cytolytic CD8low phenotype in the presence of IL-4. J Immunol 174:2021–9PubMedGoogle Scholar
  26. Kim J, Woods A, Becker-Dunn E, Bottomly K (1985) Distinct functional phenotypes of cloned la-restricted helper T cells. J Exp Med 162:188–201CrossRefPubMedGoogle Scholar
  27. Kotanides H, Reich NC (1996) Interleukin-4-induced stat6 recognizes and activates a target site in the promoter of the interleukin-4 receptor gene. J Biol Chem 271:25555–25561CrossRefPubMedGoogle Scholar
  28. Kurata H, Lee HJ, O’Garra A, Arai N (1999) Ectopic expression of activated stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11:677–688CrossRefPubMedGoogle Scholar
  29. Le Gros G, Ben-Sasson SZ, Seder R, Finkelman FD, Paul WE (1990) Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med 172:921–929CrossRefPubMedGoogle Scholar
  30. Marsland BJ, Schmitz N, Kopf M (2005) IL-4Ralpha signaling is important for CD8+ T cell cytotoxicity in the absence of CD4+ T cell help. Eur J Immunol 35:1391–8CrossRefPubMedGoogle Scholar
  31. Mohrs M, Ledermann B, Kohler G, Dorfmuller A, Gessner A, Brombacher F (1999) Differences between IL-4- and IL-4 receptor alpha-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J Immunol 162:7302–7308PubMedGoogle Scholar
  32. Morris SC, Heidorn SM, Herbert DR, Perkins C, Hildeman D, Khodoun MV, Finkelman FD (2009) Endogenously produced IL-4 nonredundantly stimulates CD8+ T cell proliferation. J Immunol 182:1429–38CrossRefPubMedCentralPubMedGoogle Scholar
  33. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. 1. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348PubMedGoogle Scholar
  34. Murata T, Noguchi PD, Puri RK (1996) IL-13 induces phosphorylation and activation of JAK2 Janus kinase in human colon carcinoma cell lines: similarities between IL-4 and IL-13 signaling. J Immunol 156:2972–2978PubMedGoogle Scholar
  35. Murata T, Taguchi J, Puri RK (1998) Interleukin-13 receptor alpha’ but not alpha chain: a functional component interleukin-4 receptors. Blood 91:3884–3891PubMedGoogle Scholar
  36. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738CrossRefPubMedGoogle Scholar
  37. Noelle R, Kramme RP, Ohara J, Uhr JW, Vietta ES (1984) Increased expression of Ia antigens on resting B cells: an additional role for B-cell growth factor. Proc Natl Acad Sci USA 81:6149–6153CrossRefPubMedCentralPubMedGoogle Scholar
  38. Ohara J, Paul WE (1988) Up-regulation of interleukin 4/B cell stimulatory factor 1 receptor expression. Proc Natl Acad Sci USA 85:8221–8225CrossRefPubMedCentralPubMedGoogle Scholar
  39. Oliver JA, Stolberg VR, Chensue SW, King PD (2012) IL-4 acts as a potent stimulator of IFN-γ expression in CD8+ T cells through STAT6-dependent and independent induction of Eomesodermin and T-bet. Cytokine 57:191–9Google Scholar
  40. Olver S, Groves P, Buttigieg K, Morris ES, Janas ML, Kelso A, Kienzle N (2006) Tumor-derived interleukin-4 reduces tumor clearance and deviates the cytokine and granzyme profile of tumor-induced CD8+ T cells. Cancer Res 66:571–80CrossRefPubMedGoogle Scholar
  41. Olver S, Apte SH, Baz A, Kelso A, Kienzle N (2013) Interleukin-4-induced loss of CD8 expression and cytolytic function in effector CD8 T cells persists long term in vivo. Immunology 139:187–96CrossRefPubMedGoogle Scholar
  42. Ouyang W, Lohning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A, Murphy KM (2000) Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12:27–37CrossRefPubMedGoogle Scholar
  43. Paul WE (1991) Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77:1859PubMedGoogle Scholar
  44. Pernis AB (2002) The role of IRF-4 in B and T cell activation and differentiation. J Interferon Cytokine Res 22:111–120CrossRefPubMedGoogle Scholar
  45. Pinheiro AAS, Morrot A, Chakravarty S, Overstreet M, Bream JH, Irusta PM, Zavala F (2007) IL-4 induces a wide-spectrum intracellular signaling cascade in CD8+ T cells. J Leukoc Biol 4:1102–1110CrossRefGoogle Scholar
  46. Ranasinghe C, Ramshaw IA (2009) Immunisation route-dependent expression of IL-4/IL-13 can modulate HIV-specific CD8(+) CTL avidity. Eur J Immunol 39:1819–30CrossRefPubMedGoogle Scholar
  47. Ranasinghe C, Turner SJ, McArthur C, Sutherland DB, Kim JH, Doherty PC, Ramshaw IA (2007) Mucosal HIV-1 pox virus prime-boost immunization induces high-avidity CD8+ T cells with regime-dependent cytokine/granzyme B profiles. J Immunol 178:2370–9PubMedGoogle Scholar
  48. Riou C, Dumont AR, Yassine-Diab B, Haddad EK, Sekaly RP (2006) IL-4 influences the differentiation and the susceptibility to activation-induced cell death of human naive CD8+ T cells. Int Immunol 18:827–835CrossRefPubMedGoogle Scholar
  49. Rozwarski DA, Gronenborn AM, Clore GM, Bazan JF, Bohm A, Wlodawer A, Hatada M, Karplus PA (1994) Structural comparison among the short-chain helical cytokines. Structure 2:159–173CrossRefPubMedGoogle Scholar
  50. Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, Friedmann MC, Miyajima A, Puri RK, Paul WE et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262:1880–1883CrossRefPubMedGoogle Scholar
  51. Sad S, Marcotte R, Mosmann TR (1995) Cytokine-induced differentiation of precursor mouse CD8? T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2:271CrossRefPubMedGoogle Scholar
  52. Santra S, Ghosh SK (1997) Interleukin-4 is effective in restoring cytotoxic T cell activity that declines during in vivo progression of a murine B lymphoma. Cancer Immunol Immunother 44:291CrossRefPubMedGoogle Scholar
  53. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kühn R, Müller W, Palm N, Rüde E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996PubMedGoogle Scholar
  54. Schüler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T (1999) T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficientmice. J Exp Med 189:803–810CrossRefPubMedCentralPubMedGoogle Scholar
  55. Schüler T, Kammertoens T, Preiss S, Debs P, Noben-Trauth N, Blankenstein T (2001) Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8+ T cells. J Exp Med 194:1767–1775CrossRefPubMedCentralPubMedGoogle Scholar
  56. Seder RA, Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T-cells. Annu Rev Immunol 12:635–673CrossRefPubMedGoogle Scholar
  57. Seder RA, Paul WE, Davis MM, De ST, Groth BF (1992) The presence of interleukin-4 during in vitro priming determines the lymphokine-producing potential of CD4+ T-cells receptor transgenic mice. J Exp Med 176:1091–1098CrossRefPubMedGoogle Scholar
  58. Sivaprasad U, Warrier MR, Gibson AM, Chen W, Tabata Y, Bass SA, Rothenberg ME, Khurana Hershey GK (2010) IL- 13Ralpha2 has a protective role in a mouse model of cutaneous inflammation. J Immunol 185:6802–6808CrossRefPubMedGoogle Scholar
  59. Smeltz RB, Chen J, Hu-Li J, Shevach EM (2001) Regulation of interleukin (IL)-18 receptor alpha chain expression on CD4(+) T cells during T helper (Th)1/Th2 differentiation: critical downregulatory role of IL-4. J Exp Med 194:143CrossRefPubMedCentralPubMedGoogle Scholar
  60. Smerzbertling C, Duschl A (1995) Both interleukin-4 and interleukin-13 induce tyrosine phosphorylation of the 140kD subunit of the interleukin-4 receptor. J Biol Chem 270:966–970CrossRefGoogle Scholar
  61. Snapper CM, Hornbeck PV, Atasoy U, Pereira GM, Paul WE (1988) Interleukin 4 induces membrane Thy-1 expression on normal murine B cells. Proc Natl Acad Sci USA 85:6107–6111CrossRefPubMedCentralPubMedGoogle Scholar
  62. Staudt V, Bothur E (2010) Klein M (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192–202CrossRefPubMedGoogle Scholar
  63. Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, Nakamura M, Takesita T (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14:179–205CrossRefPubMedGoogle Scholar
  64. Szabo SJ, Dighe AS, Gubler U, Murphy KM (1997) Regulation of the interleukin (IL)-12Rβ2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185:817CrossRefPubMedCentralPubMedGoogle Scholar
  65. Takaki H, Ichiyama K, Koga K, Chinen T, Takaesu G, Sugiyama Y, Kato S, Yoshimura A, Kobayashi T (2008) STAT6 Inhibits TGF-beta1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J Biol Chem 283:14955–14962CrossRefPubMedCentralPubMedGoogle Scholar
  66. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T, Akira S (1996) Essential role of Stat6 in IL-4 signalling. Nature 18:627–30CrossRefGoogle Scholar
  67. Tanaka T, Hu-Li J, Seder RA, St D, Grothi BF, Paul WE (1993) Interleukin 4 suppresses interleukin 2 and interferon y production by naive T cells stimulated by accessory cell-dependent receptor engagement. Proc Natl Acad Sci USA 90:5914–5918CrossRefPubMedCentralPubMedGoogle Scholar
  68. Thornhill MH, Wellicoms SM, Mahiouz DL, Lanchbury JS, Kyan-Aung U, Haskard DO (1991) Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and –independent binding mechanisms. J Immunol 146:592–598PubMedGoogle Scholar
  69. Urban J, Noben-Trauth N, Donaldson D, Madden K, SC SM, Collins M, Finkelman F (1998) IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8:255–264CrossRefPubMedGoogle Scholar
  70. Usui T, Nishikomori R, Kitani A, Strober W (2003) GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 18:415–428CrossRefPubMedGoogle Scholar
  71. Vietta ES, Ohara J, Myers CD, Layton JE, Krammer PH, Paul WE (1985) Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J Exp Med 162:1726–1731CrossRefGoogle Scholar
  72. Villacres MC, Bergmann CC (1999) Enhanced cytotoxic T cell activity in IL-4-deficient mice. J Immunol 162:2663PubMedGoogle Scholar
  73. Weinreich M, Odumade O, Jameson SC, Hogquist K (2010) T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat Immunol 11:709–16CrossRefPubMedCentralPubMedGoogle Scholar
  74. Wijesundara DK, Tscharke DC, Jackson RJ, Ranasinghe C (2013) Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity. PloS One 8:55788CrossRefGoogle Scholar
  75. Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370:153–157CrossRefPubMedGoogle Scholar
  76. Wong MT, Ye JJ, Alonso MN, Landrigan A, Cheung RK, Engleman E, Utz PJ (2010) Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol 88:624–631CrossRefPubMedCentralPubMedGoogle Scholar
  77. Wurster AL, Withers DJ, Uchida T, White MF, Grusby MJ (2002) Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent rescue from apoptosis. Mol Cell Biol 22:117–126CrossRefPubMedCentralPubMedGoogle Scholar
  78. Yagi R, Suzuki W, Seki N, Kohyama M, Inoue T, Arai T, Kubo M (2002) The IL-4 production capability of different strains of naive CD4(+) T cells controls the direction of the T(h) cell response. Int Immunol 14:1–11CrossRefPubMedGoogle Scholar
  79. Yin T, Tsang ML, Yang YC (1994) JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes. J Biol Chem 269:26614–26617PubMedGoogle Scholar
  80. Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE (2001) Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 166:7276–7281PubMedGoogle Scholar
  81. Zhu J, Guo L, Min B, Watson CJ, Hu-Li J, Young HA, Tsichlis PN, Paul WE (2002) Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity 16:733–744CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. L. Silva-Filho
    • 1
  • C. Caruso-Neves
    • 1
    • 2
  • A. A. S. Pinheiro
    • 1
    • 3
  1. 1.Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Nacional de Ciência e Tecnologia em Biologia e BioimagemConselho Nacional de Desenvolvimento Científico e Tecnológico/MCTRio de JaneiroBrazil
  3. 3.Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região AmazônicaConselho Nacional de Desenvolvimento Científico e Tecnológico/MCTRio de JaneiroBrazil

Personalised recommendations