Biophysical Reviews

, Volume 6, Issue 1, pp 3–14 | Cite as

Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate

  • Senena Corbalán-GarcíaEmail author
  • Juan C. Gómez-FernándezEmail author


Classical protein kinase C (PKC) enzymes are known to be important factors in cell physiology both in terms of health and disease. They are activated by triggering signals that induce their translocation to membranes. The consensus view is that several secondary messengers are involved in this activation, such as cytosolic Ca2+ and diacylglycerol. Cytosolic Ca2+ bridges the C2 domain to anionic phospholipids as phosphatidylserine in the membrane, and diacylglycerol binds to the C1 domain. Both diacylglycerol and the increase in Ca2+ concentration are assumed to arise from the extracellular signal that triggers the hydrolysis of phosphatidylinositol-4,5-bisphosphate. However, results obtained during the last decade indicate that this phosphoinositide itself is also responsible for modulating classical PKC activity and its localization in the plasma membrane.


Protein kinase C Phosphatidylinositol-4,5-bisphosphate C2 domain Diacylglycerol C1 domain 



This work was supported by Ministerio de Economía y Competitividad (Spain), grant [BFU2011-22828], co-financed by the European Regional Development Fund and 08700/PI/08 (Fundación Seneca, Region de Murcia).

Conflict of interest



  1. Ausili A, Corbalan-Garcia S, Gomez-Fernandez JC, Marsh D (2011) Membrane docking of the C2 domain from protein kinase Calpha as seen by polarized ATR-IR. The role of PIP. Biochim Biophys Acta 1808(3):684–695. doi: 10.1016/j.bbamem.2010.11.035 CrossRefPubMedGoogle Scholar
  2. Banaszynski LA, Wandless TJ (2006) Conditional control of protein function. Chem Biol 13(1):11–21. doi: 10.1016/j.chembiol.2005.10.010 CrossRefPubMedGoogle Scholar
  3. Bell RM, Hannun YA, Loomis CR (1986) Mechanism of regulation of protein kinase C by lipid second messengers. Symp Fundam Cancer Res 39:145–156PubMedGoogle Scholar
  4. Bolsover SR, Gomez-Fernandez JC, Corbalan-Garcia S (2003) Role of the Ca2+/phosphatidylserine binding region of the C2 domain in the translocation of protein kinase Calpha to the plasma membrane. J Biol Chem 278(12):10282–10290. doi: 10.1074/jbc.M212145200 CrossRefPubMedGoogle Scholar
  5. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257(13):7847–7851PubMedGoogle Scholar
  6. Conesa-Zamora P, Gomez-Fernandez JC, Corbalan-Garcia S (2000) The C2 domain of protein kinase calpha is directly involved in the diacylglycerol-dependent binding of the C1 domain to the membrane. Biochim Biophys Acta 1487(2–3):246–254CrossRefPubMedGoogle Scholar
  7. Conesa-Zamora P, Lopez-Andreo MJ, Gomez-Fernandez JC, Corbalan-Garcia S (2001) Identification of the phosphatidylserine binding site in the C2 domain that is important for PKC alpha activation and in vivo cell localization. Biochemistry 40(46):13898–13905CrossRefPubMedGoogle Scholar
  8. Corbalan-Garcia S, Garcia-Garcia J, Rodriguez-Alfaro JA, Gomez-Fernandez JC (2003) A new phosphatidylinositol 4,5-bisphosphate-binding site located in the C2 domain of protein kinase Calpha. J Biol Chem 278(7):4972–4980. doi: 10.1074/jbc.M209385200 CrossRefPubMedGoogle Scholar
  9. Corbalan-Garcia S, Gomez-Fernandez JC (2006) Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim Biophys Acta 1761(7):633–654. doi: 10.1016/j.bbalip.2006.04.015 CrossRefPubMedGoogle Scholar
  10. Corbin JA, Evans JH, Landgraf KE, Falke JJ (2007) Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry 46(14):4322–4336. doi: 10.1021/bi062140c CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chen CH, Malkova S, Pingali SV, Long F, Garde S, Cho W, Schlossman ML (2009) Configuration of PKCalpha-C2 domain bound to mixed SOPC/SOPS lipid monolayers. Biophys J 97(10):2794–2802. doi: 10.1016/j.bpj.2009.08.037 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Egea-Jimenez AL, Perez-Lara A, Corbalan-Garcia S, Gomez-Fernandez JC (2013) Phosphatidylinositol 4,5-bisphosphate decreases the concentration of Ca(2+), phosphatidylserine and diacylglycerol required for protein kinase C alpha to reach maximum activity. PLoS One 8(7):e69041. doi:  10.1371/journal.pone.0069041
  13. Evans JH, Murray D, Leslie CC, Falke JJ (2006) Specific translocation of protein kinase Calpha to the plasma membrane requires both Ca2+ and PIP2 recognition by its C2 domain. Mol Biol Cell 17(1):56–66. doi: 10.1091/mbc.E05-06-0499 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Farah CA, Sossin WS (2012) The role of C2 domains in PKC signaling. Adv Exp Med Biol 740:663–683. doi: 10.1007/978-94-007-2888-2_29 CrossRefPubMedGoogle Scholar
  15. Gomez-Fernandez JC, Corbalan-Garcia S (2007) Diacylglycerols, multivalent membrane modulators. Chem Phys Lipids 148(1):1–25. doi: 10.1016/j.chemphyslip.2007.04.003 Google Scholar
  16. Guerrero-Valero M, Ferrer-Orta C, Querol-Audi J, Marin-Vicente C, Fita I, Gomez-Fernandez JC, Verdaguer N, Corbalan-Garcia S (2009) Structural and mechanistic insights into the association of PKCalpha-C2 domain to PtdIns(4,5)P2. Proc Natl Acad Sci USA 106(16):6603–6607. doi: 10.1073/pnas.0813099106 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Guerrero-Valero M, Marin-Vicente C, Gomez-Fernandez JC, Corbalan-Garcia S (2007) The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. J Mol Biol 371(3):608–621. doi: 10.1016/j.jmb.2007.05.086 CrossRefPubMedGoogle Scholar
  18. Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314(5804):1458–1461. doi: 10.1126/science.1134389 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Hoff B, Strandberg E, Ulrich AS, Tieleman DP, Posten C (2005) 2H-NMR study and molecular dynamics simulation of the location, alignment, and mobility of pyrene in POPC bilayers. Biophys J 88(3):1818–1827. doi: 10.1529/biophysj.104.052399 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Inoue M, Kishimoto A, Takai Y, Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem 252(21):7610–7616PubMedGoogle Scholar
  21. Jimenez-Monreal AM, Aranda FJ, Micol V, Sanchez-Pinera P, de Godos A, Gomez-Fernandez JC (1999) Influence of the physical state of the membrane on the enzymatic activity and energy of activation of protein kinase C alpha. Biochemistry 38(24):7747–7754. doi: 10.1021/bi983062z CrossRefPubMedGoogle Scholar
  22. Kohout SC, Corbalan-Garcia S, Torrecillas A, Gomez-Fernandez JC, Falke JJ (2002) C2 domains of protein kinase C isoforms alpha, beta, and gamma: activation parameters and calcium stoichiometries of the membrane-bound state. Biochemistry 41(38):11411–11424CrossRefPubMedCentralPubMedGoogle Scholar
  23. Lai CL, Landgraf KE, Voth GA, Falke JJ (2010) Membrane docking geometry and target lipid stoichiometry of membrane-bound PKCalpha C2 domain: a combined molecular dynamics and experimental study. J Mol Biol 402(2):301–310. doi: 10.1016/j.jmb.2010.07.037 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Landgraf KE, Malmberg NJ, Falke JJ (2008) Effect of PIP2 binding on the membrane docking geometry of PKC alpha C2 domain: an EPR site-directed spin-labeling and relaxation study. Biochemistry 47(32):8301–8316. doi: 10.1021/bi800711t CrossRefPubMedCentralPubMedGoogle Scholar
  25. Leonard TA, Rozycki B, Saidi LF, Hummer G, Hurley JH (2011) Crystal structure and allosteric activation of protein kinase C betaII. Cell 144(1):55–66. doi: 10.1016/j.cell.2010.12.013 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Marin-Vicente C, Gomez-Fernandez JC, Corbalan-Garcia S (2005) The ATP-dependent membrane localization of protein kinase Calpha is regulated by Ca2+ influx and phosphatidylinositol 4,5-bisphosphate in differentiated PC12 cells. Mol Biol Cell 16(6):2848–2861. doi: 10.1091/mbc.E05-01-0067 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Marin-Vicente C, Nicolas FE, Gomez-Fernandez JC, Corbalan-Garcia S (2008) The PtdIns(4,5)P2 ligand itself influences the localization of PKCalpha in the plasma membrane of intact living cells. J Mol Biol 377(4):1038–1052. doi: 10.1016/j.jmb.2007.12.011 Google Scholar
  28. Marin-Vicente C, Guerrero-Valero M, Nielsen ML, Savitski MM, Gomez-Fernandez JC, Zubarev RA, Corbalan-Garcia S (2011) ATP enhances neuronal differentiation of PC12 cells by activating PKC alpha interactions with cytoskeletal proteins. J Proteome Res 10(2):529–540. doi: 10.1021/pr100742r CrossRefPubMedGoogle Scholar
  29. Marsh D (1999) Quantitation of secondary structure in ATR infrared spectroscopy. Biophys J 77(5):2630–2637CrossRefPubMedCentralPubMedGoogle Scholar
  30. Medkova M, Cho W (1998a) Mutagenesis of the C2 domain of protein kinase C-alpha. Differential roles of Ca2+ ligands and membrane binding residues. J Biol Chem 273(28):17544–17552CrossRefPubMedGoogle Scholar
  31. Medkova M, Cho W (1998b) Mutagenesis of the C2 domain of protein kinase Cepsilon. J Biol Chem 273:17544–17552CrossRefPubMedGoogle Scholar
  32. Medkova M, Cho W (1999) Interplay of C1 and C2 domains of protein kinase C-alpha in its membrane binding and activation. J Biol Chem 274(28):19852–19861CrossRefPubMedGoogle Scholar
  33. Micol V, Sanchez-Pinera P, Villalain J, de Godos A, Gomez-Fernandez JC (1999) Correlation between protein kinase C alpha activity and membrane phase behavior. Biophys J 76(2):916–927. doi: 10.1016/S0006-3495(99)77255-3 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mochly-Rosen D, Das K, Grimes KV (2012) Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 11(12):937–957. doi: 10.1038/nrd3871 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Nalefski EA, Newton AC (2001) Membrane binding kinetics of protein kinase C betaII mediated by the C2 domain. Biochemistry 40(44):13216–13229CrossRefPubMedGoogle Scholar
  36. Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270(48):28495–28498CrossRefPubMedGoogle Scholar
  37. Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298(3):E395–E402. doi: 10.1152/ajpendo.00477.2009 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258(5082):607–614CrossRefPubMedGoogle Scholar
  39. Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95(3):307–318CrossRefPubMedGoogle Scholar
  40. Ochoa WF, Corbalan-Garcia S, Eritja R, Rodriguez-Alfaro JA, Gomez-Fernandez JC, Fita I, Verdaguer N (2002) Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase C alpha. J Mol Biol 320(2):277–291. doi: 10.1016/s0022-2836(02)00464-3 CrossRefPubMedGoogle Scholar
  41. Perez-Lara A, Egea-Jimenez AL, Ausili A, Corbalan-Garcia S, Gomez-Fernandez JC (2012) The membrane binding kinetics of full-length PKCalpha is determined by membrane lipid composition. Biochim Biophys Acta 1821(11):1434–1442. doi: 10.1016/j.bbalip.2012.06.012 CrossRefPubMedGoogle Scholar
  42. Rodriguez-Alfaro JA, Gomez-Fernandez JC, Corbalan-Garcia S (2004) Role of the lysine-rich cluster of the C2 domain in the phosphatidylserine-dependent activation of PKCalpha. J Mol Biol 335(4):1117–1129CrossRefPubMedGoogle Scholar
  43. Sakai N, Sasaki K, Ikegaki N, Shirai Y, Ono Y, Saito N (1997) Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein. J Cell Biol 139(6):1465–1476CrossRefPubMedCentralPubMedGoogle Scholar
  44. Sanchez-Bautista S, Marin-Vicente C, Gomez-Fernandez JC, Corbalan-Garcia S (2006) The C2 domain of PKCalpha is a Ca2+-dependent PtdIns(4,5)P2 sensing domain: a new insight into an old pathway. J Mol Biol 362(5):901–914. doi: 10.1016/j.jmb.2006.07.093 CrossRefPubMedGoogle Scholar
  45. Sanchez-Bautista S, Corbalan-Garcia S, Perez-Lara A, Gomez-Fernandez JC (2009) A comparison of the membrane binding properties of C1B domains of PKCgamma, PKCdelta, and PKCepsilon. Biophys J 96(9):3638–3647. doi: 10.1016/j.bpj.2009.02.021 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Sanchez-Pinera P, Micol V, Corbalan-Garcia S, Gomez-Fernandez JC (1999) A comparative study of the activation of protein kinase C alpha by different diacylglycerol isomers. Biochem J 337(Pt 3):387–395CrossRefPubMedCentralPubMedGoogle Scholar
  47. Scott AM, Antal CE, Newton AC (2013) Electrostatic and hydrophobic interactions differentially tune membrane binding kinetics of the c2 domain of protein kinase Calpha. J Biol Chem 288(23):16905–16915. doi: 10.1074/jbc.M113.467456 CrossRefPubMedGoogle Scholar
  48. Sharkey NA, Leach KL, Blumberg PM (1984) Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc Natl Acad Sci USA 81(2):607–610CrossRefPubMedCentralPubMedGoogle Scholar
  49. Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y (1979a) Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 254(10):3692–3695PubMedGoogle Scholar
  50. Takai Y, Kishimoto A, Kikkawa U, Mori T, Nishizuka Y (1979b) Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun 91(4):1218–1224CrossRefPubMedGoogle Scholar
  51. Tanaka Y, Miyake R, Kikkawa U, Nishizuka Y (1986) Rapid assay of binding of tumor-promoting phorbol esters to protein kinase C1. J Biochem 99(1):257–261PubMedGoogle Scholar
  52. Torrecillas A, Laynez J, Menendez M, Corbalan-Garcia S, Gomez-Fernandez JC (2004) Calorimetric study of the interaction of the C2 domains of classical protein kinase C isoenzymes with Ca2+ and phospholipids. Biochemistry 43(37):11727–11739. doi: 10.1021/bi0489659 CrossRefPubMedGoogle Scholar
  53. Verdaguer N, Corbalan-Garcia S, Ochoa WF, Fita I, Gomez-Fernandez JC (1999) Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine. EMBO J 18(22):6329–6338. doi: 10.1093/emboj/18.22.6329 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Violin JD, Newton AC (2003) Pathway illuminated: visualizing protein kinase C signaling. IUBMB Life 55(12):653–660. doi: 10.1080/152165401310001642216 CrossRefPubMedGoogle Scholar
  55. Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161(5):899–909. doi: 10.1083/jcb.200302125 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Wang QJ, Bhattacharyya D, Garfield S, Nacro K, Marquez VE, Blumberg PM (1999) Differential localization of protein kinase C delta by phorbol esters and related compounds using a fusion protein with green fluorescent protein. J Biol Chem 274(52):37233–37239CrossRefPubMedGoogle Scholar
  57. Wu-Zhang AX, Newton AC (2013) Protein kinase C pharmacology: refining the toolbox. Biochem J 452(2):195–209. doi: 10.1042/BJ20130220 CrossRefPubMedGoogle Scholar
  58. Zeng L, Webster SV, Newton PM (2012) The biology of protein kinase C. Adv Exp Med Biol 740:639–661. doi: 10.1007/978-94-007-2888-2_28 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Bioquímica y Biología Molecular-A, Regional Campus of International Excellence “Campus Mare Nostrum”Universidad de MurciaMurciaSpain

Personalised recommendations