Biophysical Reviews

, Volume 5, Issue 3, pp 233–247 | Cite as

Intrinsic disorder in the kinesin superfamily

  • Mark A. Seeger
  • Sarah E. RiceEmail author


Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and, in general, incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that the ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this concept, we present a systematic analysis of the kinesin superfamily, family by family, for predicted ID regions. We combine this analysis with a comprehensive review of kinesin-binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that the ID residue is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins.


Kinesin Microtubule Motor protein Cargo Regulation Intrinsic disorder 



Intrinsic disorder/intrinsically disordered




Post-translational modification



We wish to acknowledge members of the Rice lab for their contributions and the NIH for support (Molecular Biophysics Training Program grant 5 T32 GM008382 to M.A.S. and R01GM072656 to S.E.R.).

Conflict of interest


Supplementary material

12551_2012_96_MOESM1_ESM.pdf (4.6 mb)
Figure S1: Sites of ligand binding and PTM correlate with regions of ID. The ID prediction plots and sites of experimentally determined ligand binding and PTM are aligned with the predicted topology diagrams for each kinesin in the human complement, family by family. Regions of known structure, such as the motor or small globular domains, or regions of predicted coiled-coil, are designated with colored bars as indicated. Regions of unknown structure are indicated with a black line. The ID prediction plots from (Seeger et al. 2012) are superimposed in blue onto kinesin topology diagrams, such that the midline of the topology diagram lines up with the cutoff value used to predict if a residue is ordered or disordered. Therefore, residues for which the blue ID prediction plots are at or above the midline of the topology diagrams are predicted to be disordered, and residues for which the blue ID prediction plots are below the midline of the topology diagrams are predicted to be ordered. The experimentally determined ligand-binding (138 total) and PTM (42 total) sites, as described in the cited literature, are indicated by the black bars below the topology diagrams and with normal and italic text respectively. Ligand-binding sites that contain a greater percentage of predicted ID residues than a random segment of the same number of residues from the same molecule are indicated with asterisk (100/138 = 72.5 %), and PTM residues or sites that contain predicted ID residues are indicated with hash marks (38/42 = 90.5 %). (PDF 4600 kb)
12551_2012_96_MOESM2_ESM.pdf (4.6 mb)
Figure S2 ID in the kinesin motor domain. The kinesin motor domains contain disordered loops. A The crystal structure of the Kif5B monomeric motor (PDB: 1MKJ) is shown as a ribbon diagram, with the ADP molecule shown as a space-filling model. The surface-accessible loops are highlighted in red and labeled as indicated. The P-loop, Switch I, Switch II, and the neck-linker are highlighted in blue and labeled as indicated. B The frequencies with which each indicated structural element of the kinesin motor domain in a given kinesin subfamily was predicted to be disordered are listed in this table. The N-terminus, L1, L4/P-loop, L7, Switch I, L10, Switch II, L12, and the neck-linker are the motor elements most often predicted to be disordered. N N-terminus, L loop. (PDF 4600 kb)


  1. Abaza A, Soleilhac JM, Westendorf J, Piel M, Crevel I, Roux A, Pirollet F (2003) M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis. J Biol Chem 278(30):27844–27852. doi: 10.1074/jbc.M304522200 PubMedCrossRefGoogle Scholar
  2. Asaba N, Hanada T, Takeuchi A, Chishti AH (2003) Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem 278(10):8395–8400. doi: 10.1074/jbc.M210362200 PubMedCrossRefGoogle Scholar
  3. Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275(39):30451–30457. doi: 10.1074/jbc.M003469200 PubMedCrossRefGoogle Scholar
  4. Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. doi: 10.1038/nature10324 PubMedCrossRefGoogle Scholar
  5. Bieling P, Telley IA, Piehler J, Surrey T (2008) Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep 9(11):1121–1127. doi: 10.1038/embor.2008.169 PubMedCrossRefGoogle Scholar
  6. Blangy A, Lane HA, D’Herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–1169PubMedCrossRefGoogle Scholar
  7. Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil Cytoskeleton 44(2):119–132. doi: 10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C PubMedCrossRefGoogle Scholar
  8. Bruno L, Salierno M, Wetzler DE, Desposito MA, Levi V (2011) Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells. PLoS One 6(4):e18332. doi: 10.1371/journal.pone.0018332 PubMedCrossRefGoogle Scholar
  9. Cai D, Hoppe AD, Swanson JA, Verhey KJ (2007) Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 176(1):51–63. doi: 10.1083/jcb.200605097 PubMedCrossRefGoogle Scholar
  10. Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20(5):1348–1359. doi: 10.1091/mbc.E08-09-0971 PubMedCrossRefGoogle Scholar
  11. Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143(1):49–63PubMedCrossRefGoogle Scholar
  12. Chana M, Tripet BP, Mant CT, Hodges RS (2002) The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A. J Struct Biol 137(1–2):206–219. doi: 10.1006/jsbi.2002.4446 PubMedCrossRefGoogle Scholar
  13. Chana MS, Tripet BP, Mant CT, Hodges R (2005) Stability and specificity of heterodimer formation for the coiled-coil neck regions of the motor proteins Kif3A and Kif3B: the role of unstructured oppositely charged regions. J Pept Res 65(2):209–220. doi: 10.1111/j.1399-3011.2005.00210.x PubMedCrossRefGoogle Scholar
  14. Cheng J, Sweredoski M, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Min Knowl Disc 11(3):213–222CrossRefGoogle Scholar
  15. Cheung HO, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KK, Briscoe J, Hui CC (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):ra29. doi: 10.1126/scisignal.2000405 PubMedCrossRefGoogle Scholar
  16. Cho KI, Cai Y, Yi H, Yeh A, Aslanukov A, Ferreira PA (2007) Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8(12):1722–1735. doi: 10.1111/j.1600-0854.2007.00647.x PubMedCrossRefGoogle Scholar
  17. Diefenbach RJ, Mackay JP, Armati PJ, Cunningham AL (1998) The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37(47):16663–16670. doi: 10.1021/bi981163r PubMedCrossRefGoogle Scholar
  18. Dorner C, Ullrich A, Haring HU, Lammers R (1999) The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J Biol Chem 274(47):33654–33660PubMedCrossRefGoogle Scholar
  19. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. doi: 10.1093/bioinformatics/bti541 PubMedCrossRefGoogle Scholar
  20. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746. doi: 10.1093/bioinformatics/btp518 PubMedCrossRefGoogle Scholar
  21. Driver JW, Rogers AR, Jamison DK, Das RK, Kolomeisky AB, Diehl MR (2010) Coupling between motor proteins determines dynamic behaviors of motor protein assemblies. Phys Chem Chem Phys 12(35):10398–10405. doi: 10.1039/c0cp00117a PubMedCrossRefGoogle Scholar
  22. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171PubMedGoogle Scholar
  23. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9[Suppl 2]:S1. doi: 10.1186/1471-2164-9-S2-S1 CrossRefGoogle Scholar
  24. Dyson HJ (2011) Expanding the proteome: disordered and alternatively folded proteins. Q Rev Biophys 44(4):467–518. doi: 10.1017/S0033583511000060 PubMedCrossRefGoogle Scholar
  25. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208. doi: 10.1038/nrm1589 PubMedCrossRefGoogle Scholar
  26. Ems-McClung SC, Hertzer KM, Zhang X, Miller MW, Walczak CE (2007) The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly. Mol Biol Cell 18(1):282–294. doi: 10.1091/mbc.E06-08-0724 PubMedCrossRefGoogle Scholar
  27. Espeut J, Gaussen A, Bieling P, Morin V, Prieto S, Fesquet D, Surrey T, Abrieu A (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29(5):637–643. doi: 10.1016/j.molcel.2008.01.004 PubMedCrossRefGoogle Scholar
  28. Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA, Diez S (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11(6):717–723. doi: 10.1038/ncb1877 PubMedCrossRefGoogle Scholar
  29. Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, Barr FA (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172(3):363–372. doi: 10.1083/jcb.200511061 PubMedCrossRefGoogle Scholar
  30. Guillaud L, Wong R, Hirokawa N (2008) Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat Cell Biol 10(1):19–29. doi: 10.1038/ncb1665 PubMedCrossRefGoogle Scholar
  31. Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–786. doi: 10.1016/j.cub.2005.03.041 PubMedCrossRefGoogle Scholar
  32. Hackney DD, Stock MF (2000) Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat Cell Biol 2(5):257–260. doi: 10.1038/35010525 PubMedCrossRefGoogle Scholar
  33. Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y, Jih GT, Meyhofer E, Verhey KJ (2009) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7(3):e72. doi: 10.1371/journal.pbio.1000072 PubMedCrossRefGoogle Scholar
  34. Hammond JW, Blasius TL, Soppina V, Cai D, Verhey KJ (2010) Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J Cell Biol 189(6):1013–1025. doi: 10.1083/jcb.201001057 PubMedCrossRefGoogle Scholar
  35. Harrison A, King SM (2000) The molecular anatomy of dynein. Essays Biochem 35:75–87PubMedGoogle Scholar
  36. Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441(7089):115–119. doi: 10.1038/nature04736 PubMedCrossRefGoogle Scholar
  37. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88(3):1089–1118. doi: 10.1152/physrev.00023.2007 PubMedCrossRefGoogle Scholar
  38. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696. doi: 10.1038/nrm2774 PubMedCrossRefGoogle Scholar
  39. Hizlan D, Mishima M, Tittmann P, Gross H, Glotzer M, Hoenger A (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153(1):73–84. doi: 10.1016/j.jsb.2005.10.007 PubMedCrossRefGoogle Scholar
  40. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wuthrich K, Akhmanova A, Steinmetz MO (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138(2):366–376. doi: 10.1016/j.cell.2009.04.065 PubMedCrossRefGoogle Scholar
  41. Huang Y, Yao Y, Xu HZ, Wang ZG, Lu L, Dai W (2009) Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E. Cell Cycle 8(16):2643–2649PubMedCrossRefGoogle Scholar
  42. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584PubMedCrossRefGoogle Scholar
  43. Jiang K, Wang J, Liu J, Ward T, Wordeman L, Davidson A, Wang F, Yao X (2009) TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Rep 10(8):857–865. doi: 10.1038/embor.2009.94 PubMedCrossRefGoogle Scholar
  44. Kaan HY, Hackney DD, Kozielski F (2011) The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333(6044):883–885. doi: 10.1126/science.1204824 PubMedCrossRefGoogle Scholar
  45. Kerber ML, Cheney RE (2011) Myosin-X: a MyTH-FERM myosin at the tips of filopodia. J Cell Sci 124(Pt 22):3733–3741. doi: 10.1242/jcs.023549 PubMedCrossRefGoogle Scholar
  46. Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142(3):444–455. doi: 10.1016/j.cell.2010.06.039 PubMedCrossRefGoogle Scholar
  47. King SM (2000) The dynein microtubule motor. Biochim Biophys Acta 1496(1):60–75PubMedCrossRefGoogle Scholar
  48. Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109(3):347–358PubMedCrossRefGoogle Scholar
  49. Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD (2011) Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145(6):914–925. doi: 10.1016/j.cell.2011.04.028 PubMedCrossRefGoogle Scholar
  50. Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S, Klopfenstein DR, Koushika SP (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6(11):e1001200. doi: 10.1371/journal.pgen.1001200 PubMedCrossRefGoogle Scholar
  51. Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J (2002) CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156(5):783–790. doi: 10.1083/jcb.200109090 PubMedCrossRefGoogle Scholar
  52. Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14(4):273–286. doi: 10.1016/j.cub.2004.01.055 PubMedGoogle Scholar
  53. Lee KS, Yuan YL, Kuriyama R, Erikson RL (1995) Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol 15(12):7143–7151PubMedGoogle Scholar
  54. Lee SH, McCormick F, Saya H (2010) Mad2 inhibits the mitotic kinesin MKlp2. J Cell Biol 191(6):1069–1077. doi: 10.1083/jcb.201003095 PubMedCrossRefGoogle Scholar
  55. Lee T, Langford KJ, Askham JM, Bruning-Richardson A, Morrison EE (2008) MCAK associates with EB1. Oncogene 27(17):2494–2500. doi: 10.1038/sj.onc.1210867 PubMedCrossRefGoogle Scholar
  56. Li JF, Nebenfuhr A (2008) The tail that wags the dog: the globular tail domain defines the function of myosin V/XI. Traffic 9(3):290–298. doi: 10.1111/j.1600-0854.2007.00687.x PubMedCrossRefGoogle Scholar
  57. Liao H, Li G, Yen TJ (1994) Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265(5170):394–398PubMedCrossRefGoogle Scholar
  58. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003a) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459PubMedCrossRefGoogle Scholar
  59. Linding R, Russell RB, Neduva V, Gibson TJ (2003b) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708PubMedCrossRefGoogle Scholar
  60. Liu X, Erikson RL (2007) The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun 353(4):960–964. doi: 10.1016/j.bbrc.2006.12.142 PubMedCrossRefGoogle Scholar
  61. Liu D, Ding X, Du J, Cai X, Huang Y, Ward T, Shaw A, Yang Y, Hu R, Jin C, Yao X (2007) Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J Biol Chem 282(29):21415–21424. doi: 10.1074/jbc.M609026200 PubMedCrossRefGoogle Scholar
  62. Maddika S, Sy SM, Chen J (2009) Functional interaction between Chfr and Kif22 controls genomic stability. J Biol Chem 284(19):12998–13003. doi: 10.1074/jbc.M900333200 PubMedCrossRefGoogle Scholar
  63. Mazumdar M, Sundareshan S, Misteli T (2004) Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166(5):613–620. doi: 10.1083/jcb.200401142 PubMedCrossRefGoogle Scholar
  64. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376. doi: 10.1371/journal.pcbi.1000376 PubMedCrossRefGoogle Scholar
  65. Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2(1):41–54PubMedCrossRefGoogle Scholar
  66. Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162(5):863–875. doi: 10.1083/jcb.200306009 PubMedCrossRefGoogle Scholar
  67. Nitta R, Kikkawa M, Okada Y, Hirokawa N (2004) KIF1A alternately uses two loops to bind microtubules. Science 305(5684):678–683. doi: 10.1126/science.1096621 PubMedCrossRefGoogle Scholar
  68. Ogawa T, Nitta R, Okada Y, Hirokawa N (2004) A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116(4):591–602PubMedCrossRefGoogle Scholar
  69. Ohsugi M, Tokai-Nishizumi N, Shiroguchi K, Toyoshima YY, Inoue J, Yamamoto T (2003) Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J 22(9):2091–2103. doi: 10.1093/emboj/cdg208 PubMedCrossRefGoogle Scholar
  70. Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J (2008) The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci 121(Pt 23):3912–3921. doi: 10.1242/jcs.035360 PubMedCrossRefGoogle Scholar
  71. Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD (1999) A structural change in the kinesin motor protein that drives motility. Nature 402(6763):778–784. doi: 10.1038/45483 PubMedCrossRefGoogle Scholar
  72. Sanhaji M, Friel CT, Kreis NN, Kramer A, Martin C, Howard J, Strebhardt K, Yuan J (2010) Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 30(11):2594–2607. doi: 10.1128/MCB.00098-10 PubMedCrossRefGoogle Scholar
  73. Schafer B, Gotz C, Dudek J, Hessenauer A, Matti U, Montenarh M (2009) KIF5C: a new binding partner for protein kinase CK2 with a preference for the CK2alpha’ subunit. Cell Mol Life Sci 66(2):339–349. doi: 10.1007/s00018-008-8478-3 PubMedCrossRefGoogle Scholar
  74. Seeger MA, Zhang Y, Rice SE (2012) Kinesin tail domains are intrinsically disordered. Proteins 80(10):2437–46. PMCID: PMC3437001Google Scholar
  75. Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496(1):3–22PubMedCrossRefGoogle Scholar
  76. Shastry S, Hancock WO (2010) Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr Biol 20(10):939–943. doi: 10.1016/j.cub.2010.03.065 PubMedCrossRefGoogle Scholar
  77. Shiroguchi K, Ohsugi M, Edamatsu M, Yamamoto T, Toyoshima YY (2003) The second microtubule-binding site of monomeric kid enhances the microtubule affinity. J Biol Chem 278(25):22460–22465. doi: 10.1074/jbc.M212274200 PubMedCrossRefGoogle Scholar
  78. Sindelar CV (2011) A seesaw model for intermolecular gating in the kinesin motor protein. Biophys Rev 3(2):85–100. doi: 10.1007/s12551-011-0049-4 PubMedCrossRefGoogle Scholar
  79. Stock MF, Guerrero J, Cobb B, Eggers CT, Huang TG, Li X, Hackney DD (1999) Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J Biol Chem 274(21):14617–14623PubMedCrossRefGoogle Scholar
  80. Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE (2011) Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 22(17):3070–3080. doi: 10.1091/mbc.E11-04-0363 PubMedCrossRefGoogle Scholar
  81. Sueishi M, Takagi M, Yoneda Y (2000) The forkhead-associated domain of Ki-67 antigen interacts with the novel kinesin-like protein Hklp2. J Biol Chem 275(37):28888–28892. doi: 10.1074/jbc.M003879200 PubMedCrossRefGoogle Scholar
  82. Tahara K, Takagi M, Ohsugi M, Sone T, Nishiumi F, Maeshima K, Horiuchi Y, Tokai-Nishizumi N, Imamoto F, Yamamoto T, Kose S, Imamoto N (2008) Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J Cell Biol 180(3):493–506. doi: 10.1083/jcb.200708003 PubMedCrossRefGoogle Scholar
  83. Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M, Medema RH (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19(20):1703–1711. doi: 10.1016/j.cub.2009.08.027 PubMedCrossRefGoogle Scholar
  84. Tanenbaum ME, Macurek L, van der Vaart B, Galli M, Akhmanova A, Medema RH (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21(16):1356–1365. doi: 10.1016/j.cub.2011.07.017 PubMedCrossRefGoogle Scholar
  85. Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S, Inoue J, Yamamota T (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15(3):457–467PubMedGoogle Scholar
  86. Tompa P (2011) Unstructural biology coming of age. Curr Opin Struct Biol 21(3):419–425. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  87. Uchiyama Y, Sakaguchi M, Terabayashi T, Inenaga T, Inoue S, Kobayashi C, Oshima N, Kiyonari H, Nakagata N, Sato Y, Sekiguchi K, Miki H, Araki E, Fujimura S, Tanaka SS, Nishinakamura R (2010) Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc Natl Acad Sci USA 107(20):9240–9245. doi: 10.1073/pnas.0913748107 PubMedCrossRefGoogle Scholar
  88. Uversky VN (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634. doi: 10.1039/c0cs00057d PubMedCrossRefGoogle Scholar
  89. Vale RD (1996) Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol 135(2):291–302PubMedCrossRefGoogle Scholar
  90. Waitzman JS, Larson AG, Cochran JC, Naber N, Cooke R, Jon Kull F, Pate E, Rice SE (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101(11):2760–2769. doi: 10.1016/j.bpj.2011.10.032 PubMedCrossRefGoogle Scholar
  91. Wang L, Sauer UH (2008) OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 24(11):1401–1402. doi: 10.1093/bioinformatics/btn132 PubMedCrossRefGoogle Scholar
  92. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi: 10.1016/j.jmb.2004.02.002 PubMedCrossRefGoogle Scholar
  93. Weaver LN, Ems-McClung SC, Stout JR, LeBlanc C, Shaw SL, Gardner MK, Walczak CE (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21(17):1500–1506. doi: 10.1016/j.cub.2011.08.005 PubMedCrossRefGoogle Scholar
  94. Weinger JS, Qiu M, Yang G, Kapoor TM (2011) A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Curr Biol 21(2):154–160. doi: 10.1016/j.cub.2010.12.038 PubMedCrossRefGoogle Scholar
  95. Wozniak MJ, Melzer M, Dorner C, Haring HU, Lammers R (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 6:35. doi: 10.1186/1471-2121-6-35 PubMedCrossRefGoogle Scholar
  96. Yamada KH, Hanada T, Chishti AH (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46(35):10039–10045. doi: 10.1021/bi701169w PubMedCrossRefGoogle Scholar
  97. Wu G, Chen PL (2008) Structural requirements of chromokinesin Kif4A for its proper function in mitosis. Biochem Biophys Res Commun 372(3):454–458. doi: S0006-291X(08)00959-5 Google Scholar
  98. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93(16):8443–8448PubMedCrossRefGoogle Scholar
  99. Yonekura H, Nomura A, Ozawa H, Tatsu Y, Yumoto N, Uyeda TQ (2006) Mechanism of tail-mediated inhibition of kinesin activities studied using synthetic peptides. Biochem Biophys Res Commun 343(2):420–427. doi: 10.1016/j.bbrc.2006.02.169 PubMedCrossRefGoogle Scholar
  100. Yoshimura Y, Terabayashi T, Miki H (2010) Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol Cell Biol 30(9):2206–2219. doi: 10.1128/MCB.01181-09 PubMedCrossRefGoogle Scholar
  101. Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 142(6):1547–1558PubMedCrossRefGoogle Scholar
  102. Zhang X, Ems-McClung SC, Walczak CE (2008a) Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19(7):2752–2765. doi: 10.1091/mbc.E08-02-0198 PubMedCrossRefGoogle Scholar
  103. Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ (2008b) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29(6):729–741. doi: 10.1016/j.molcel.2008.01.013 PubMedCrossRefGoogle Scholar
  104. Zhang L, Shao H, Huang Y, Yan F, Chu Y, Hou H, Zhu M, Fu C, Aikhionbare F, Fang G, Ding X, Yao X (2011) PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J Biol Chem 286(4):3033–3046. doi: 10.1074/jbc.M110.165340 PubMedCrossRefGoogle Scholar
  105. Zhou R, Niwa S, Homma N, Takei Y, Hirokawa N (2009) KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139(4):802–813. doi: 10.1016/j.cell.2009.10.023 PubMedCrossRefGoogle Scholar
  106. Zhu C, Bossy-Wetzel E, Jiang W (2005) Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 389(Pt 2):373–381. doi: 10.1042/BJ20050097 PubMedGoogle Scholar
  107. Zusev M, Benayahu D (2009) The regulation of MS-KIF18A expression and cross talk with estrogen receptor. PLoS One 4(7):e6407. doi: 10.1371/journal.pone.0006407 PubMedCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Cell and Molecular Biology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations