Biophysical Reviews

, Volume 4, Issue 3, pp 245–253 | Cite as

Application of a systems approach to study developmental gene regulation

Review

Abstract

All cells in a multicellular organism contain the same genome, yet different cell types express different sets of genes. Recent advances in high throughput genomic technologies have opened up new opportunities to understand the gene regulatory network in diverse cell types in a genome-wide manner. Here, I discuss recent advances in experimental and computational approaches for the study of gene regulation in embryonic development from a systems perspective. This review is written for computational biologists who have an interest in studying developmental gene regulation through integrative analysis of gene expression, chromatin landscape, and signaling pathways. I highlight the utility of publicly available data and tools, as well as some common analysis approaches.

Keywords

Developmental signaling Gene regulatory network Computational biophysics ChIP-seq Histone modification Epigenomics 

References

  1. Armit C (2007) Developmental biology and databases. Organogenesis 3:70–73CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balaskas N, Ribeiro A, Panovska J et al (2012) Gene regulatory logic for reading the sonic hedgehog signaling gradient in the vertebrate neural tube. Cell 148:273–284. doi:10.1016/j.cell.2011.10.047 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. doi:10.1016/j.cell.2007.05.009 CrossRefPubMedGoogle Scholar
  5. Bénazet J-D, Bischofberger M, Tiecke E et al (2009) A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323:1050–1053. doi:10.1126/science.1168755 CrossRefPubMedGoogle Scholar
  6. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326. doi:10.1016/j.cell.2006.02.041 CrossRefPubMedGoogle Scholar
  7. Boyle A, Davis S, Shulha H et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322. doi:10.1016/j.cell.2007.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen X, Xu H, Yuan P et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117. doi:10.1016/j.cell.2008.04.043 CrossRefPubMedGoogle Scholar
  9. Chen T, Ho JW, Liu H, Xie X (2009) An innovative approach for testing bioinformatics programs using metamorphic testing. BMC Bioinforma 10:24. doi:10.1186/1471-2105-10-24 CrossRefGoogle Scholar
  10. Contrino S, Smith RN, Butano D et al (2011) modMine: flexible access to modENCODE data. Nucleic Acids Res. doi:10.1093/nar/gkr921
  11. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution, 1st ed. Academic, New YorkGoogle Scholar
  12. Davidson EH, McClay DR, Hood L (2003) Regulatory gene networks and the properties of the developmental process. Proc Natl Acad Sci USA 100:1475–1480CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3CrossRefPubMedGoogle Scholar
  14. Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49. doi:10.1038/nature09906 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47. doi:10.1038/nrm3036 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gaulton KJ, Nammo T, Pasquali L et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255–259. doi:10.1038/ng.530 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Grobstein C (1967) Mechanisms of organogenetic tissue interaction. Natl Cancer Inst Monogr 26:279–299PubMedGoogle Scholar
  18. Hawkins RD, Hon GC, Lee LK et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–491. doi:10.1016/j.stem.2010.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ho JWK, Charleston MA (2011) Network modelling of gene regulation. Biophys Rev 3:1–13. doi:10.1007/s12551-010-0041-4 CrossRefGoogle Scholar
  20. Ho JWK, Bishop E, Karchenko P et al (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 12:134. doi:10.1186/1471-2164-12-134 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ho JWK, Alekseyenko AA, Kuroda MI, Park PJ (2012) Genome-wide mapping of protein-DNA interactions by ChIP-seq. Tag-based Approaches for Next-Generation Sequencing: Merging two High-throughput Technologies. Wiley, Weinheim, pp 139–152CrossRefGoogle Scholar
  22. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359. doi:10.1038/nbt.1508 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kharchenko PV, Alekseyenko AA, Schwartz YB et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485. doi:10.1038/nature09725 CrossRefPubMedGoogle Scholar
  25. Kirouac DC, Madlambayan GJ, Yu M et al (2009) Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 5:293. doi:10.1038/msb.2009.49 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kirouac DC, Ito C, Csaszar E et al (2010) Dynamic interaction networks in a hierarchically organized tissue. Mol Syst Biol. doi:10.1038/msb.2010.71
  27. Kirschner MW (2005) The meaning of systems biology. Cell 121:503–504. doi:10.1016/j.cell.2005.05.005 CrossRefPubMedGoogle Scholar
  28. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664. doi:10.1126/science.1069492 CrossRefPubMedGoogle Scholar
  29. Lachke SA, Ho JWK, Kryukov GV et al (2012) iSyTE: Integrated Systems Tool for Eye Gene Discovery. Investig Ophthalmol Vis Sci 53:1617–1627. doi:10.1167/iovs.11-8839 CrossRefGoogle Scholar
  30. Lan A, Smoly IY, Rapaport G et al (2011) ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res 39:W424–W429. doi:10.1093/nar/gkr359 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Leek JT, Scharpf RB, Bravo HC et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11:733–739. doi:10.1038/nrg2825 CrossRefPubMedGoogle Scholar
  33. Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517. doi:10.1101/gr.079558.108 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mohammad HP, Baylin SB (2010) Linking cell signaling and the epigenetic machinery. Nat Biotechnol 28:1033–1038. doi:10.1038/nbt1010-1033 CrossRefPubMedGoogle Scholar
  35. Müller F-J, Schuldt BM, Williams R et al (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8:315–317. doi:10.1038/nmeth.1580 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ng A, Bursteinas B, Gao Q et al (2006) Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief Bioinform 7:318–330. doi:10.1093/bib/bbl036 CrossRefPubMedGoogle Scholar
  37. Nielsen R, Pedersen TÅ, Hagenbeek D et al (2008) Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22:2953–2967. doi:10.1101/gad.501108 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Novershtern N, Regev A, Friedman N (2011) Physical module networks: an integrative approach for reconstructing transcription regulation. Bioinformatics 27:i177–i185. doi:10.1093/bioinformatics/btr222 CrossRefPubMedPubMedCentralGoogle Scholar
  39. O’Connell DJ, Ho JWK, Mammoto T et al (2012) A Wnt-Bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Sci Signal 5:ra4. doi:10.1126/scisignal.2002414 PubMedGoogle Scholar
  40. Ourfali O, Shlomi T, Ideker T et al (2007) SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics 23:i359–i366. doi:10.1093/bioinformatics/btm170 CrossRefPubMedGoogle Scholar
  41. Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature. doi:10.1038/nature10100
  42. Ravasi T, Suzuki H, Cannistraci CV et al (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752. doi:10.1016/j.cell.2010.01.044 CrossRefPubMedGoogle Scholar
  43. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432. doi:10.1038/nature05918 CrossRefPubMedGoogle Scholar
  44. Rhead B, Karolchik D, Kuhn RM et al (2010) The UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:D613–D619. doi:10.1093/nar/gkp939 CrossRefPubMedGoogle Scholar
  45. Rodriguez-Esteban R (2009) Biomedical text mining and its applications. PLoS Comput Biol 5:e1000597. doi:10.1371/journal.pcbi.1000597 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rodriguez-Esteban R, Roberts PM, Crawford ME (2009) Identifying and classifying biomedical perturbations in text. Nucleic Acids Res 37:771–777. doi:10.1093/nar/gkn986 CrossRefPubMedGoogle Scholar
  47. Saxén L, Thesleff I (1992) Epithelial-mesenchymal interactions in murine organogenesis. CIBA Found Symp 165:183–193, discussion 193–198PubMedGoogle Scholar
  48. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Song L, Crawford GE (2010) DNase-Seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010:pdb.prot5384. doi: 10.1101/pdb.prot5384
  50. Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 45:13–38PubMedGoogle Scholar
  51. Stark C, Breitkreutz B-J, Chatr-Aryamontri A et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:D698–D704. doi:10.1093/nar/gkq1116 CrossRefPubMedGoogle Scholar
  52. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968. doi:10.1016/j.cell.2005.08.029 CrossRefPubMedGoogle Scholar
  53. Taylor J, Schenck I, Blankenberg D, Nekrutenko A (2007) Using galaxy to perform large-scale interactive data analyses. Curr Protoc Bioinforma Chapter 10:Unit 10.5. doi: 10.1002/0471250953.bi1005s19
  54. Tegnér J, Björkegren J (2007) Perturbations to uncover gene networks. Trends Genet 23:34–41. doi:10.1016/j.tig.2006.11.003 CrossRefPubMedGoogle Scholar
  55. The ENCODE, Consortium Project (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9:e1001046. doi:10.1371/journal.pbio.1001046 CrossRefGoogle Scholar
  56. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. doi:10.1093/bib/bbs017
  57. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Visel A, Blow MJ, Li Z et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858. doi:10.1038/nature07730 CrossRefPubMedPubMedCentralGoogle Scholar
  59. von Mering C, Huynen M, Jaeggi D et al (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261. doi:10.1093/nar/gkg034 CrossRefGoogle Scholar
  60. Xie X, Ho JWK, Murphy C et al (2011) Testing and validating machine learning classifiers by metamorphic testing. J Syst Softw 84:544–558. doi:10.1016/j.jss.2010.11.920 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yeang C-H, Ideker T, Jaakkola T (2004) Physical network models. J Comput Biol 11:243–262. doi:10.1089/1066527041410382 CrossRefPubMedGoogle Scholar
  62. Yeger-Lotem E, Riva L, Su LJ et al (2009) Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet 41:316–323. doi:10.1038/ng.337 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang Y, Liu T, Meyer C et al (2008) Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9:R137. doi:10.1186/gb-2008-9-9-r137 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18. doi:10.1038/nrg2905 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2012

Authors and Affiliations

  1. 1.Division of Genetics, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations