Biophysical Reviews

, Volume 5, Issue 1, pp 29–39

SH3 domains: modules of protein–protein interactions



Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.


Three-dimensional structure SH3 domain Cell signaling Src-family Myosin Protein conformation 



Activated CDC42-associated kinase


Carboxyl-terminal Src kinase


FGR and yes-related novel kinase


Hematopoetic cell kinase


Islet brain 1


Proline-enriched phosphatase


Proline/glutamic acid/serine/threonine-rich domain


Protein tyrosine kinase


Src homology 3


  1. Akiva E, Friedlander G, Itzhaki Z, Margalit H (2012) A dynamic view of domain-motif interactions. PloS Comp Biol 8:e1002341CrossRefGoogle Scholar
  2. Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI (2010) Crystal structure of the Src family Kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. J Biol Chem 285:35455–35461PubMedCrossRefGoogle Scholar
  3. Antoku S, Mayer BJ (2009) Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 122:4228–4238PubMedCrossRefGoogle Scholar
  4. Arold ST, Ulmer TS, Mulherni TD, Werner JM, Ladbury JE, Campbell ID, Noble MEM (2001) The role of the Src homology 3-Src homology 2 interface in the regulation of Src kinases. J Biol Chem 276:17199–17205PubMedCrossRefGoogle Scholar
  5. Banks P, Franks NP, Dickinson R (2010) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 112:614–622PubMedCrossRefGoogle Scholar
  6. Barda-Saad M, Shirasu N, Pauker MH, Hassan N, Perl O, Balbo A, Yamaguchi H, Houtman JCD, Appella E, Schuck P, Samelson LE (2010) Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 29:2315–2328PubMedCrossRefGoogle Scholar
  7. Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275:38494–38499PubMedCrossRefGoogle Scholar
  8. Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H (2005) Structural characterization of Lyn-SH3 domain in complex with a herpes viral protein reveals an extended recognition motif that enhances binding affinity. Prot Sci 14:2487–2498CrossRefGoogle Scholar
  9. Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141PubMedCrossRefGoogle Scholar
  10. Broome MA, Hunter T (1997) The PDGF receptor phosphorylates Tyr 138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene 14:17–34PubMedCrossRefGoogle Scholar
  11. Chandra BR, Gowthaman R, Akhouri RR, Gupta D, Sharma A (2004) Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis. Protein Eng Des Sel 17:175–182CrossRefGoogle Scholar
  12. Chothia C, Janin J (1981) Relative orientation of close-packed,8-pleated sheets in proteins. Proc Natl Acad Sci USA 78:4146–4150PubMedCrossRefGoogle Scholar
  13. Clark SG, Stern MJ, Horvitz HR (1992) C. Elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356:340–344PubMedCrossRefGoogle Scholar
  14. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005) The crystal structure of a C-Src complex in an active conformation suggests possible steps in C-Src activation. Structure 13:861–871PubMedCrossRefGoogle Scholar
  15. Dai Z, Pendergast AM (1995) Abi2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 9:2569–2582PubMedCrossRefGoogle Scholar
  16. Dalgarno DC, Botfield MC, Rickles RJ (1998) SH3 domains and drug design: ligands, structure, and biological function. John Wiley & Sons, New YorkGoogle Scholar
  17. Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571PubMedCrossRefGoogle Scholar
  18. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD (2002) Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and aCrk-derived phosphopeptide. Proc Natl Acad Sci USA 99:14053–14058PubMedCrossRefGoogle Scholar
  19. Du Y, BC Bock, Schachter KA, Chao M, Gallo KA (2005) CDC42 Induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 280:42984–42993PubMedCrossRefGoogle Scholar
  20. Ehlers MD (2002) Molecular morphogens for dendritic spines. Trends Neurosci 25:64–67PubMedCrossRefGoogle Scholar
  21. Falzone CJ, Kao Y-H, Zhao J, Bryant DA, Lecomte JTJ (1994) Three-dimensional solution structure of PsaE from the Cyanobacterium synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33:6052–6062PubMedCrossRefGoogle Scholar
  22. Fazi B, Jamie M, Cope TV, Douangamath A, Ferracuti S, Schirwitz K, Zucconi A, Drubin DG, Wilmanns M, Cesareni G, Castagnoli L (2002) Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1. J Biol Chem 277:5290–5298PubMedCrossRefGoogle Scholar
  23. Feller SM, Lewitzky M (2006) Potential disease targets for drugs that disrupt protein-protein interactions of Grb2 and Crk family adaptors. Curr Pharmacol Des 12:529–548CrossRefGoogle Scholar
  24. Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266:1241–1247PubMedCrossRefGoogle Scholar
  25. Feng S, Kasahara C, Rickles RJ, Schreiber SL (1995) Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc Natl Acad Sci USA 92:12408–12415PubMedCrossRefGoogle Scholar
  26. Foth BJ, Goedecke MC, Soldati D (2005) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686CrossRefGoogle Scholar
  27. Fujita-Becker S, Tsiavaliaris G, Ohkura R, Shimada T, Manstein DJ, Sutoh K (2006) Functional characterization of the N-terminal region of myosin-2. J Biol Chem 281:36102–36109PubMedCrossRefGoogle Scholar
  28. Galisteo ML, Yang Y, Ureña J, Schlessinger J (2006) Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA 103:9796–9801PubMedCrossRefGoogle Scholar
  29. Gaul BS, Harrison ML, Geahlen RL, Burton RA, Post CB (2000) Substrate recognition by the Lyn protein-tyrosine kinase. J Biol Chem 275:16174–16182PubMedCrossRefGoogle Scholar
  30. Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D (2001) A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol 8:997–1004CrossRefGoogle Scholar
  31. Gmeiner WH, Horita DA (2001) Implications of SH3 domain structure and dynamics for protein regulation and drug design. Cell Biochem Biophys 35:127–140PubMedCrossRefGoogle Scholar
  32. Gorina S, Pavletich NP (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274:1001–1005PubMedCrossRefGoogle Scholar
  33. Gregorieff A, Cloutier JF, Veillette A (1998) Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 273:13217–13222PubMedCrossRefGoogle Scholar
  34. Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK, Harsha HC, Sato M, Bader JS, Lash AE, Minna JD, Pandey A, Varmus HE (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA 105:14112–14117PubMedCrossRefGoogle Scholar
  35. Harkiolaki M, Lewitzky M, Gilbert RJC, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moare I, Feller SM (2003) Structural basis for SH3 domain-mediated high affinity binding between Mona/Gads and SLP-76. EMBO J 22:2571–2582PubMedCrossRefGoogle Scholar
  36. Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Gyorgyi A-G, Cohen C (2002) Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci USA 99:12645–12650PubMedCrossRefGoogle Scholar
  37. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA (1998) Solution structure of the human Hck SH3 domain and identification of its ligand binding site. J Mol Biol 278:253–265PubMedCrossRefGoogle Scholar
  38. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282PubMedCrossRefGoogle Scholar
  39. Jackson P, Baltimore D (1989) N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-Abl. EMBO J 8:449–456PubMedGoogle Scholar
  40. Janz JM, Sakmar TP, Min KC (2007) A novel interaction between atrophin-interacting protein 4 and p21-activated kinase-interactive exchange factor is mediated by an SH3 domain. J Biol Chem 28:28893–28903CrossRefGoogle Scholar
  41. Jefferson JJ, Ciatto C, Shapiro L, Liem RKH (2007) Structural analysis of the plakin domain of bullous pemphigoid Antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J Mol Biol 366:244–257PubMedCrossRefGoogle Scholar
  42. Jiang M, Axe T, Holgate R, Rubbi CP, Okorokov AL, Mee T, Milner J (2001) P53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20:5449–5458PubMedCrossRefGoogle Scholar
  43. Jones RJ, Brunton VG, Frame MC (2000) Adhesion-linked kinases in cancer; emphasis on Src, focal adhesion kinase and PI 3-kinase. Eur J Cancer 36:1595–1606PubMedCrossRefGoogle Scholar
  44. Kadaveru K, Vyas J, Schiller MR (2009) Viral infection and human disease—insights from minimotifs. Front Biosci 13:6455–6471Google Scholar
  45. Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13P. EMBO J 21:4268–4276PubMedCrossRefGoogle Scholar
  46. Kaneko T, Shawn LL, Li SC (2008) The SH3 domain—a family of versatile peptide- and protein-recognition module. Front Biosci 13:4938–4952Google Scholar
  47. Kang YS, Kim W, Huh YH, Bae J, Kim JS, Song WK (2011) P130Cas attenuates epidermal growth factor (EGF) receptor internalization by modulating EGF-triggered dynamin phosphorylation. PloSOne 6:e20125Google Scholar
  48. Kapeller R, Prasad KVS, Janssen O, Hou W, Schaffhausen BS, Rudd CE, Cantley LC (1994) Identification of Two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 269:1927–1933PubMedGoogle Scholar
  49. Kardinal C, Posern G, Zheng J, Knudsen BS, Moarefi I, Feller SM (1999) Rational development of cell penetrating high affinity SH3 domain binding peptides that selectively disrupt the signal transduction of Crk family adapters. Ann N Y Acad Sci USA 886:289–292CrossRefGoogle Scholar
  50. Kato J, TakejaT GC, Iba H, Levy JB, Hanafusa H (1986) Amino acid substitutions sufficient to convert the nontransforming p60csrc protein to a transforming protein. Mol Cell Biol 6:4155–4160PubMedGoogle Scholar
  51. Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241PubMedGoogle Scholar
  52. Kesti T, Ruppelt A, Wang JH, Liss M, Wagner R, Tasken K, Saksela K (2007) Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3epsilon. J Immunol 179:878–885PubMedGoogle Scholar
  53. Kiehart DP, Franke JD, Chee MK, Montague RA, T-l C, Roote J, Ashburner M (2004) Drosophila crinkled, mutations of which disrupt morphogenesis and cause lethality, encodes Fly myosin VIIA. Genetics 168:1337–1352PubMedCrossRefGoogle Scholar
  54. Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F (2007) Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Oncogene 14:503–510Google Scholar
  55. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674PubMedCrossRefGoogle Scholar
  56. Kristensen O, Guenat S, Dar I, Allaman-Pillet N, Abderrahmani A, Ferdaoussi M, Roduit R, Maurer F, Beckmann JS, Kastrup JS, Gajhede M, Bonny C (2006) A unique set of SH3–SH3 interactions controls IB1 homodimerization. EMBO J 25:785–797PubMedCrossRefGoogle Scholar
  57. Kurochkina N (2010) Helix-helix interactions and their impact on protein motifs and assemblies. J Theor Biol 264:585–592PubMedCrossRefGoogle Scholar
  58. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J (1996) Crystal structure of the conserved core of HIV-1 NEF complexed with a SRC family SH3 domain. Cell 85:931–942PubMedCrossRefGoogle Scholar
  59. Levaot N, Simoncic PD, Dimitriou JD, Scotter A, La Rose J, Ng AHM, Willett TL, Wang CJ, Janmohamed S, Grynpas M, Reichenberger E, Rottapel R (2011) 3BP2-Deficient mice are osteoporotic with impaired osteoblast and osteoclast functions. J Clin Invest 121:3244–3257PubMedCrossRefGoogle Scholar
  60. Lim WA, Richards FM, Fox RO (1994) Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372:375–379PubMedCrossRefGoogle Scholar
  61. Lim DC, Cooke BM, Doerig C, Saeij JPJ (2011) Toxoplasma and plasmodium protein kinases: roles in invasion and host cell remodeling. Int J Parasitol 42:21–32PubMedCrossRefGoogle Scholar
  62. Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an interaction between the SH3 domain and the nterminal extension of the essential light chain in class II myosins. J Mol Biol 37:902–913CrossRefGoogle Scholar
  63. Maignan S, Guilloteau JP, Fromage N, Arnoux B, Becquart J, Ducruix A (1995) Crystal structure of the mammalian Grb2 adaptor. Science 268:291–293PubMedCrossRefGoogle Scholar
  64. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  65. Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263PubMedGoogle Scholar
  66. Mayer BJ, Hamaguchi M, Hanafusa H (1988) A novel viral oncogene with structural similarity to phospholipase C. Nature 332:272–275PubMedCrossRefGoogle Scholar
  67. Ménétrey J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A (2008) The post-rigor structure of myosin VI and implications for the recovery stroke. EMBO J 27:244–252PubMedCrossRefGoogle Scholar
  68. Moncalián G, Cárdenes N, Deribe YL, Spínola-Amilibia M, Dikic I, Bravo J (2006) Atypical polyproline recognition by the CMS N-terminal Src homology 3 domain. J Biol Chem 281:38845–38853PubMedCrossRefGoogle Scholar
  69. Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT, Musacchio A, Cesareni G, Di Fiore PP (1999) A novel peptide-SH3 interaction. EMBO J 18:5300–5309PubMedCrossRefGoogle Scholar
  70. Moore CJ, Winder SJ (2010) Dystroglycan versatility in cell adhesion: a tale of multiple motifs. Cell communication and signaling 8:3–15PubMedCrossRefGoogle Scholar
  71. Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J 99:3801–3810PubMedCrossRefGoogle Scholar
  72. Muralidharan V, Dutta K, Cho J, Vila-Perello M, Raleigh DP, Cowburn D, Muir TW (2006) Solution structure and folding characteristics of the C- terminal SH3 domain of c-Crk-II. Biochemistry 45:8874–8884PubMedCrossRefGoogle Scholar
  73. Musacchio A (2002) How SH3 domains recognize proline. Adv Protein Chem 61:211–268PubMedCrossRefGoogle Scholar
  74. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A (2006) New approaches to high-throughput structure characterization of SH3 complexes: the example of myosin-3 and myosin-5 SH3 domains from S. cerevisiae. Protein Sci 4:795–807, 2006CrossRefGoogle Scholar
  75. Nam HJ, Haser WG, Roberts TM, Frederick CA (1996) Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Structure 4:1105–1114PubMedCrossRefGoogle Scholar
  76. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR (2006) Molecular basis for regulation of Src by the docking protein p130Cas. J Mol Recognit 19:30–38PubMedCrossRefGoogle Scholar
  77. Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE (2012) Structure of an intermediate state in protein folding and aggregation. Science 336:362–366PubMedCrossRefGoogle Scholar
  78. Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA (1998) Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 282:2088–2092PubMedCrossRefGoogle Scholar
  79. Nishida M, Nagata K, Hachimory Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F (2001) Novel recognition mode between VAV and GRB2 SH3 domains. EMBO J 20:2995–3007PubMedCrossRefGoogle Scholar
  80. Noble MEM, Musacchio A, Saraste M, Courtneidge SA, Wierenga RK (1993) Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J 12:2617–2624PubMedGoogle Scholar
  81. Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002) Structure of the carboxylterminal Src kinase, Csk. J Biol Chem 277:14351–14354PubMedCrossRefGoogle Scholar
  82. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N et al (1991) Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp 60c-src complexes, and PI3-kinase. Cell 65:91–104PubMedCrossRefGoogle Scholar
  83. Owen DJ, Wigge P, Vallis Y, Moore JDA, Evans PR, McMahon HT (1998) Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J 17:5273–5285PubMedCrossRefGoogle Scholar
  84. Park H, Wahl MI, Afar DEH, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet J-P, Witte ON (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4:515–525PubMedCrossRefGoogle Scholar
  85. Pauling L, Corey RB (1951) The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci USA 37:272–281PubMedCrossRefGoogle Scholar
  86. Proulx-Bonneau S, Guezguez A, Annabi B (2011) A concerted HIF-1a/MT1-MMP signalling axis regulates the expression of the 3BP2 adaptor protein in hypoxic mesenchymal stromal cells. PloSOne 6:e21511–e21520Google Scholar
  87. Queval CJ, Nicolas V, Beau I (2011) Role of Src kinases in mobilization of glycosylphosphatidylinositol-anchored decay-accelerating factor by Dr fimbria-positive adhering bacteria. Infect Immun 79:2519–2534PubMedCrossRefGoogle Scholar
  88. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58PubMedCrossRefGoogle Scholar
  89. Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JF, Fiser A, Birge RB (2005) Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3domain. Oncogene 24:8187–8189PubMedGoogle Scholar
  90. Rudolph MG, Wittinghofer A, Vetter IR (1999) Nucleotide binding to the G12V-mutant of CDC42 investigated by X-ray diffraction and fluorescence spectroscopy: Two different nucleotide states in one crystal. Protein Sci 8:778–787PubMedCrossRefGoogle Scholar
  91. Sarkar P, Saleh T, Tzeng S-R, Birge RB, Kalodimos CG (2011) Structural basis for regulation of the Crk signaling protein by a proline switch. Nature Chem Biol 7:51–57CrossRefGoogle Scholar
  92. Sato M, Maruoka M, Yokota N, Kuwano M, Matsui A, Inada M, Ogawa T, Ishida-Kitagawa N, Takeya T (2011) Identification and functional analysis of a new phosphorylation site (Y398) in the SH3 domain of Abi-1. FEBS Lett 585:834–840PubMedCrossRefGoogle Scholar
  93. Seidel-Dugan C, Meyer BE, Thomas SM, Brugge JS (1992) Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol Cell Biol 12:1835–1845PubMedGoogle Scholar
  94. Shawn SCL (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653CrossRefGoogle Scholar
  95. Sheng M, Kim F (2000) The shank family of scaffold proteins. J Cell Sci 113:1851–1856PubMedGoogle Scholar
  96. Shi X, Opi S, Lugar A, Restouin A, Coursindel T, Parrot I, Perez J, Madore E, Zimmermann P, Corbeil J, Huang M, Arold ST, Collette Y, Morelli X (2010) Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. Biochem J 431:93–102PubMedCrossRefGoogle Scholar
  97. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958PubMedCrossRefGoogle Scholar
  98. Smithgall TE (1995) SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 34:125–132PubMedCrossRefGoogle Scholar
  99. Sriram G, Reichman C, Tunceroglu A, Kausha N, Saleh T, Machida K, Mayer B, Ge Q, Li J, Hornbeck P, Kalodimos CG, Birge RB (2011) Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Oncogene 30:4645–4655PubMedCrossRefGoogle Scholar
  100. Stahl ML, Ferenz CR, Kelleher KL, Kriz RW, Knopf JL (1988) Sequence similarity of phospholipase C with the non-catalytic region of Src. Nature 332:269–272PubMedCrossRefGoogle Scholar
  101. Takaku T, Ogura K, Kumeta H, Yoshida N, Inagaki F (2010) Solution structure of a novel CDC42 binding module of Bem1 and its interaction with Ste20 and CDC42. J Biol Chem 285:19346–19353PubMedCrossRefGoogle Scholar
  102. Tian L, Chen L, McClafferty H, Sailer CA, Ruth P, Knaus HG, Shipston MJ (2006) A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 20:2588–2590PubMedCrossRefGoogle Scholar
  103. Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321–324PubMedCrossRefGoogle Scholar
  104. Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K et al (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700PubMedCrossRefGoogle Scholar
  105. Vidal M, Gigoux V, Garbay C (2001) SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 40:175–186PubMedCrossRefGoogle Scholar
  106. Wang Q, Deloia MA, Kang Y, Litchke C, Zhang N, Titus MA, Walters KJ (2007) The SH3 domain of a M7 interacts with its C-terminal proline-rich region. Protein Sci 16:189–196PubMedCrossRefGoogle Scholar
  107. Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci USA 98:4361–4366PubMedCrossRefGoogle Scholar
  108. Whisstock JC, Lesk AM (1999) SH3domains in prokaryotes. Trends Biochem Sci 24:32–33CrossRefGoogle Scholar
  109. Witucki LA, Huang X, Shah K, Liu Y, Kyin S, Eck MJ, Shokat KM (2002) Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. Chem Biol 9:25–33PubMedCrossRefGoogle Scholar
  110. Wu L, Pan L, Wei Z, Zhang M (2011) Structure of MyTH-FERM domains in myosin VIIa tail bound to cargo. Science 331:757–760PubMedCrossRefGoogle Scholar
  111. Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L (2008) Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. Biochim Biophys Acta 1783:737–747PubMedCrossRefGoogle Scholar
  112. Xu W, Harrison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase C-Src. Nature 385:595–602PubMedCrossRefGoogle Scholar
  113. Yamada S, Yanamoto S, Kawasaki G, Rokutanda S, Yonezawa H, Kawakita A, Nemoto TK (2011) Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Lett 303:84–91PubMedCrossRefGoogle Scholar
  114. Yamaguchi H, Hendrickson WA (1996) Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384:484–489PubMedCrossRefGoogle Scholar
  115. Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O'Neall-Hennessey E, Reshetnikova L, Szent-Gyorgyi A-G, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564PubMedCrossRefGoogle Scholar
  116. Yao B, Zhang J, Dai H, Sun J, Jiao Y, Tang Y, Wu J, Shi Y (2007) Solution structure of the second SH3 domain of human CMS and a newly identified binding site at the C-terminus of c-Cbl. Biochim Biophys Acta 177:35–43Google Scholar
  117. Zhang JS, Koenig A, Young C, Billadeau DD (2011) GRB2 couples RhoU to epidermal growth factor receptor signaling and cell migration. Mol Biol Cell 22:2119–2130PubMedCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2012

Authors and Affiliations

  1. 1.Department of Biophysics, The School of Theoretical ModelingChevy ChaseUSA
  2. 2.Medical Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations