Biophysical Reviews

, Volume 4, Issue 4, pp 291–298 | Cite as

Contributions of fluorescence techniques to understanding G protein-coupled receptor dimerisation

Review

Abstract

G protein-coupled receptors (GPCRs) are the largest class of eukaryotic cell-surface receptors and, over the last decade, it has become clear that they are capable of dimerisation. Whilst many biochemical and biophysical approaches have been used to study dimerisation, fluorescence techniques, including Förster resonance energy transfer and single molecule fluorescence, have been key players. Here we review recent contributions of fluorescence techniques to investigate GPCR dimers, including dimerisation in cell membranes and native tissues, the effect of ligand binding on dimerisation and the kinetics of dimer formation and dissociation. The challenges of studying multicomponent membrane protein systems have led to the development and refinement of many fluorescence assays, allowing the functional consequences of receptor dimerisation to be investigated and individual protein molecules to be imaged in the membranes of living cells. It is likely that the fluorescence techniques described here will be of use for investigating many other multicomponent membrane protein systems.

Keywords

G protein-coupled receptor Dimer Oligomerisation FRET Fluorescence Single molecule fluorescence 

Notes

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; grant number BB/G019738/1).

Conflict of interest

None

References

  1. Albizu L, Balestre MN, Breton C, Pin JP, Manning M, Mouillac B, Barberis C, Durroux T (2006) Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Pharmacol 70:1783–1791PubMedCrossRefGoogle Scholar
  2. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594PubMedCrossRefGoogle Scholar
  3. Ambrosio M, Lohse MJ (2010) Microscopy: GPCR dimers moving closer. Nat Chem Biol 6:570–571PubMedCrossRefGoogle Scholar
  4. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97:3684–3689PubMedGoogle Scholar
  5. Birdsall NJ (2010) Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 31:499–508PubMedCrossRefGoogle Scholar
  6. Biteen J (2011) Moving toward the future of single-molecule-based super-resolution imaging. Biopolymers 95:287–289PubMedCrossRefGoogle Scholar
  7. Boyer SB, Slesinger PA (2010) Probing novel GPCR interactions using a combination of FRET and TIRF. Commun Integr Biol 3:343–346PubMedCrossRefGoogle Scholar
  8. Boyer SB, Clancy SM, Terunuma M, Revilla-Sanchez R, Thomas SM, Moss SJ, Slesinger PA (2009) Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J Neurosci 29:15796–15809PubMedCrossRefGoogle Scholar
  9. Ciruela F, Vallano A, Arnau JM, Sanchez S, Borroto-Escuela DO, Agnati LF, Fuxe K, Fernandez-Duenas V (2010a) G protein-coupled receptor oligomerization for what? J Recept Signal Transduct Res 30:322–330PubMedCrossRefGoogle Scholar
  10. Ciruela F, Vilardaga JP, Fernandez-Duenas V (2010b) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415PubMedCrossRefGoogle Scholar
  11. Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG (2003) Homodimerization of neuropeptide y receptors investigated by fluorescence resonance energy transfer in living cells. J Biol Chem 278:10562–10571PubMedCrossRefGoogle Scholar
  12. Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M (2009) Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6:225–230PubMedCrossRefGoogle Scholar
  13. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162PubMedCrossRefGoogle Scholar
  14. Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A, Lluis C, Canela EI, Ferre S (2007) Basic concepts in G-protein-coupled receptor homo- and heterodimerization. ScientificWorldJournal 7:48–57PubMedCrossRefGoogle Scholar
  15. Fung JJ, Deupi X, Pardo L, Yao XJ, Velez-Ruiz GA, Devree BT, Sunahara RK, Kobilka BK (2009) Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer. EMBO J 28:3315–3328PubMedCrossRefGoogle Scholar
  16. Fuxe K, Marcellino D, Borroto-Escuela DO, Frankowska M, Ferraro L, Guidolin D, Ciruela F, Agnati LF (2010) The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J Recept Signal Transduct Res 30:272–283PubMedCrossRefGoogle Scholar
  17. Golebiewska U, Johnston JM, Devi L, Filizola M, Scarlata S (2011) Differential response to morphine of the oligomeric state of mu-opioid in the presence of delta-opioid receptors. Biochemistry 50:2829–2837PubMedCrossRefGoogle Scholar
  18. Gurevich VV, Gurevich EV (2008) How and why do GPCRs dimerize? Trends Pharmacol Sci 29:234–240PubMedCrossRefGoogle Scholar
  19. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905PubMedCrossRefGoogle Scholar
  20. Harding PJ, Attrill H, Boehringer J, Ross S, Wadhams GH, Smith E, Armitage JP, Watts A (2009) Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys J 96:964–973PubMedCrossRefGoogle Scholar
  21. Harikumar KG, Miller LJ (2008) Monitoring the state of cholecystokinin receptor oligomerization after ligand binding using decay of time-resolved fluorescence anisotropy. Ann N Y Acad Sci 1144:21–27PubMedCrossRefGoogle Scholar
  22. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698PubMedCrossRefGoogle Scholar
  23. Herrick-Davis K, Grinde E, Weaver BA (2007) Serotonin 5-HT(2C) receptor homodimerization is not regulated by agonist or inverse agonist treatment. Eur J Pharmacol 568:45–53PubMedCrossRefGoogle Scholar
  24. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217PubMedCrossRefGoogle Scholar
  25. Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem 1:761–782PubMedCrossRefGoogle Scholar
  26. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006PubMedCrossRefGoogle Scholar
  27. Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480PubMedCrossRefGoogle Scholar
  28. Kuder K, Kiec-Kononowicz K (2008) Fluorescent GPCR ligands as new tools in pharmacology. Curr Med Chem 15:2132–2143PubMedCrossRefGoogle Scholar
  29. Latif R, Graves P, Davies TF (2002) Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. J Biol Chem 277:45059–45067PubMedCrossRefGoogle Scholar
  30. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525PubMedCrossRefGoogle Scholar
  31. Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG (2006) Functional reconstitution of Beta2-adrenergic receptors utilizing self-assembling nanodisc technology. Biotechniques 40:601–602, 604, 606, passimPubMedCrossRefGoogle Scholar
  32. Lukasiewicz S, Blasiak E, Faron-Gorecka A, Polit A, Tworzydlo M, Gorecki A, Wasylewski Z, Dziedzicka-Wasylewska M (2007) Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane. Pharmacol Rep 59:379–392PubMedGoogle Scholar
  33. Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39:239–264PubMedCrossRefGoogle Scholar
  34. Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628PubMedCrossRefGoogle Scholar
  35. Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329:253–262PubMedCrossRefGoogle Scholar
  36. Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567PubMedCrossRefGoogle Scholar
  37. May LT, Bridge LJ, Stoddart LA, Briddon SJ, Hill SJ (2011) Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J 25:3465–3476PubMedCrossRefGoogle Scholar
  38. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276:14092–14099PubMedGoogle Scholar
  39. Milligan G, Ramsay D, Pascal G, Carrillo JJ (2003) GPCR dimerisation. Life Sci 74:181–188PubMedCrossRefGoogle Scholar
  40. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71PubMedCrossRefGoogle Scholar
  41. Overton MC, Blumer KJ (2000) G-protein-coupled receptors function as oligomers in vivo. Curr Biol 10:341–344PubMedCrossRefGoogle Scholar
  42. Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2011) Oligomerization of the serotonin(1A) receptor in live cells: a time-resolved fluorescence anisotropy approach. J Phys Chem B 115:11439–11447PubMedCrossRefGoogle Scholar
  43. Palczewski K (2010) Oligomeric forms of G protein-coupled receptors (GPCRs). Trends Biochem Sci 35:595–600PubMedCrossRefGoogle Scholar
  44. Piehler J (2011) GPCRs: caught in a spectroscopic trap. Nat Chem Biol 7:578–579PubMedCrossRefGoogle Scholar
  45. Pioszak AA, Harikumar KG, Parker NR, Miller LJ, Xu HE (2010) Dimeric arrangement of the parathyroid hormone receptor and a structural mechanism for ligand-induced dissociation. J Biol Chem 285:12435–12444PubMedCrossRefGoogle Scholar
  46. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387PubMedCrossRefGoogle Scholar
  47. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180PubMedCrossRefGoogle Scholar
  48. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555PubMedCrossRefGoogle Scholar
  49. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240PubMedCrossRefGoogle Scholar
  50. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846PubMedCrossRefGoogle Scholar
  51. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726PubMedCrossRefGoogle Scholar
  52. Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA (2011) CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 7:624–630PubMedCrossRefGoogle Scholar
  53. Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469:241–244PubMedCrossRefGoogle Scholar
  54. Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA 104:7682–7687PubMedCrossRefGoogle Scholar
  55. Wurch T, Matsumoto A, Pauwels PJ (2001) Agonist-independent and -dependent oligomerization of dopamine D(2) receptors by fusion to fluorescent proteins. FEBS Lett 507:109–113PubMedCrossRefGoogle Scholar
  56. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327PubMedCrossRefGoogle Scholar
  57. Yanagawa M, Yamashita T, Shichida Y (2011) Comparative fluorescence resonance energy transfer analysis of metabotropic glutamate receptors: implications about the dimeric arrangement and rearrangement upon ligand bindings. J Biol Chem 286:22971–22981PubMedCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2012

Authors and Affiliations

  1. 1.Biomembrane Structure Unit, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations