Biophysical Reviews

, Volume 4, Issue 2, pp 137–147 | Cite as

Toward a molecular understanding of nanoparticle–protein interactions

  • Lennart Treuel
  • Gerd Ulrich Nienhaus


Wherever nanoparticles (NPs) come in contact with a living organism, physical and chemical interactions take place between the surfaces of the NPs and biomatter, in particular proteins. When NP are exposed to biological fluids, an adsorption layer of proteins, a “protein corona” forms around the NPs. Consequently, living systems interact with the protein-coated NP rather than with a bare NP. To anticipate biological responses to NPs, we thus require comprehensive knowledge of the interactions at the bio–nano interface. In recent years, a wide variety of biophysical techniques have been employed to elucidate mechanistic aspects of NP–protein interactions. In this brief review, we present the latest findings regarding the composition of the protein corona as it forms on NPs in the blood stream. We also discuss molecular aspects of this adsorption layer and its time evolution. The current state of knowledge is summarized, and issues that still need to be addressed to further advance our understanding of NP–protein interactions are identified.


Nanoparticles Protein corona Nanoparticle–protein interactions Nanoparticle imaging Nanoparticle spectroscopy Nanoparticle toxicity 



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Center for Functional Nanostructures (CFN) and the Priority Program SPP1313.

Conflict of interest



  1. Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12:2435–2443CrossRefGoogle Scholar
  2. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRefGoogle Scholar
  3. Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanopart Res 3:329–336CrossRefGoogle Scholar
  4. Asha Rani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  5. Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle–cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084PubMedCrossRefGoogle Scholar
  6. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, Mailänder V, Musyanovych A, Landfester K (2011) BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci 11:628–638PubMedCrossRefGoogle Scholar
  7. Barnard AS (2006) Nanohazards: knowledge is our first defence. Nat Mater 5(4):245–248PubMedCrossRefGoogle Scholar
  8. Baron MH, Revault M, Servagent-Noinville S, Abadie J, Qui-Quampoix HJ (1999) Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis. J Coll Interf Sci 214:319–332CrossRefGoogle Scholar
  9. Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Coll Interf Sci 299:56–69CrossRefGoogle Scholar
  10. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G (2010) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharmaceut Sci 99(5):2200–2208CrossRefGoogle Scholar
  11. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632PubMedCrossRefGoogle Scholar
  12. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7(24):3479–3486PubMedCrossRefGoogle Scholar
  13. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756CrossRefGoogle Scholar
  14. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007b) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055PubMedCrossRefGoogle Scholar
  15. Cheng Y, Wang M, Borghs G, Chen H (2011) Gold nanoparticle dimers for plasmon sensing. Langmuir 27:7884–7891PubMedCrossRefGoogle Scholar
  16. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550PubMedCrossRefGoogle Scholar
  17. Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19(4–5):357–369PubMedCrossRefGoogle Scholar
  18. De Paoli Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379CrossRefGoogle Scholar
  19. Des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27PubMedCrossRefGoogle Scholar
  20. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610PubMedCrossRefGoogle Scholar
  21. Fillafer C, Friedl DS, Ilyes AK, Wirth M, Gabor F (2009) Bionanoprobes to study particle-cell interactions. J Nanosci Nanotechnol 9:3239–3245PubMedCrossRefGoogle Scholar
  22. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560PubMedCrossRefGoogle Scholar
  23. Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF (2004) Nanoparticles: strained and stiff. Science 305(5684):651–654PubMedCrossRefGoogle Scholar
  24. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900PubMedCrossRefGoogle Scholar
  25. Greenfield NJ (1999) Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem 18(4):236–244CrossRefGoogle Scholar
  26. Greulich C, Kittler S, Epple M, Muhr G, Köller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394:495–502PubMedCrossRefGoogle Scholar
  27. Handy RD, Henry TB, Scrown TM, Johnston BD, Tyler CR (2008a) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17(5):396–409PubMedCrossRefGoogle Scholar
  28. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314PubMedCrossRefGoogle Scholar
  29. Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551PubMedCrossRefGoogle Scholar
  30. Havel HA (1996) Spectroscopic methods for determining protein structure in solution. Wiley-VCH, New YorkGoogle Scholar
  31. Jeong SK, Kwon MS, Lee EY, Lee HJ, Cho SY, Kim H, Yoo JS, Omenn GS, Aebersold R, Hanash S, Paik YK (2009) BiomarkerDigger: a versatile disease proteome database and analysis platform for the identification of plasma cancer biomarkers. Proteomics 9(14):3729–3740PubMedCrossRefGoogle Scholar
  32. Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU (2010) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7:S5–S13PubMedCrossRefGoogle Scholar
  33. Kah JC, Wong KY, Neoh KG, Song JH, Fu JW, Mhaisalkar S, Olivo M, Sheppard CJ (2009) Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J Drug Target 17:181–193PubMedCrossRefGoogle Scholar
  34. Keller KH (2007) Nanotechnology and society. J Nanopart Res 9:5–10CrossRefGoogle Scholar
  35. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139PubMedGoogle Scholar
  36. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010a) The toxicity of silver nanoparticles increases during storage due to slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554CrossRefGoogle Scholar
  37. Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Köller M, Epple M (2010b) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512–518CrossRefGoogle Scholar
  38. Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104(7):2029–2030PubMedCrossRefGoogle Scholar
  39. Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17(2):140–152PubMedCrossRefGoogle Scholar
  40. Leszczynski J (2010) Bionanoscience: nano meets bio at the interface. Nat Nanotechnol 5(9):633–634PubMedCrossRefGoogle Scholar
  41. Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104(21):8691–8696PubMedCrossRefGoogle Scholar
  42. Liu L, Xu K, Wang H, Tan PKJ, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4:457–463PubMedCrossRefGoogle Scholar
  43. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270PubMedCrossRefGoogle Scholar
  44. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509PubMedCrossRefGoogle Scholar
  45. Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, Mailänder V, Landfester K, Simmet T (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31(34):9015–9022PubMedCrossRefGoogle Scholar
  46. Lunov O, Zablotskii V, Syrovets T, Röcker C, Tron K, Nienhaus GU, Simmet T (2011) Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 32(2):547–555PubMedCrossRefGoogle Scholar
  47. Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Random epitope mapping for the outer layer of the protein-material interface. Physica A 373:511–520CrossRefGoogle Scholar
  48. Lynch I, Dawson KA, Linse S (2006) Detecting cryptic epitopes created by nanoparticles. Sci STKE 2006(327):14CrossRefGoogle Scholar
  49. Maffre P, Nienhaus K, Amin F, Parak WJ, Nienhaus GU (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383PubMedCrossRefGoogle Scholar
  50. Mátyus L, Szöllösi J, Jenei A (2006) Steady-state fluorescence quenching applications for studying protein structure and dynamics. J Photochem Photobiol B: Biol 83:223–236CrossRefGoogle Scholar
  51. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldsen K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269PubMedCrossRefGoogle Scholar
  52. Medintz IL, Konnert JH, Clapp AR, Stanish I, Twing ME, Mattoussi H, Mauro JM, Deschamps JR (2004) A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc Natl Acad Sci USA 101(26):9612–9617PubMedCrossRefGoogle Scholar
  53. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7(7):527–538PubMedCrossRefGoogle Scholar
  54. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534PubMedCrossRefGoogle Scholar
  55. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, BerlinGoogle Scholar
  56. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644PubMedCrossRefGoogle Scholar
  57. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  58. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  59. Nienhaus GU (ed) (2005) Protein-ligand interactions: methods and applications. Humana Press, New YorkGoogle Scholar
  60. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347PubMedCrossRefGoogle Scholar
  61. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105PubMedCrossRefGoogle Scholar
  62. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(8):1–35Google Scholar
  63. Oberdörster G, Oberdörster E, Oberdörster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedCrossRefGoogle Scholar
  64. Organization for Economic Co-operation and Development (OECD) (2008) Current developments/activities on the safety of manufactured nanomaterials. OECD environment, health and safety publication series on the safety of manufactured nanomaterials. OECD, ParisGoogle Scholar
  65. Owen R, Depledge M (2005) Nanotechnology in the environment: risks and rewards. Mar Pollut Bull 50:609–612PubMedCrossRefGoogle Scholar
  66. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102PubMedCrossRefGoogle Scholar
  67. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949PubMedCrossRefGoogle Scholar
  68. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study. Nature 3:423–428Google Scholar
  69. Printz M, Friess W (2012) Simultaneous detection and analysis of protein aggregation and protein unfolding by size exclusion chromatography with post column addition of the fluorescent dye BisANS. J Pharmaceut Sci 101(2):826–837CrossRefGoogle Scholar
  70. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945PubMedCrossRefGoogle Scholar
  71. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluoresence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580PubMedCrossRefGoogle Scholar
  72. Roco MC (2008) The journal of nanoparticle research at 10 years. J Nanopart Res 10(1):1–2CrossRefGoogle Scholar
  73. Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK (2005) The interactions of 9,10-phenantrenequinone with glyceraldehyde-3-phosphatedehydrogenase (GAPDH), a potential site for toxic actions. Chem Biol Interact 155(1):97–110PubMedCrossRefGoogle Scholar
  74. Rothen-Rutishauser B, Kiama S, Gehr P (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289PubMedCrossRefGoogle Scholar
  75. Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784PubMedCrossRefGoogle Scholar
  76. Schlücker S (2008) Gezielte Proteinlokalisierung. Biophotonik 3:18–20Google Scholar
  77. Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdoerster G, Kreyling WG (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115(5):728–733PubMedCrossRefGoogle Scholar
  78. Service RF (2006) Priorities needed for nano-risk research and development. Science 314:45PubMedCrossRefGoogle Scholar
  79. Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin—gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721PubMedCrossRefGoogle Scholar
  80. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5(4):470–476PubMedCrossRefGoogle Scholar
  81. Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU (2011a) Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small. doi: 10.1002/smll.201101353
  82. Shang L, Doerlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011b) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3(5):2009–2014PubMedCrossRefGoogle Scholar
  83. Shang L, Dong S, Nienhaus GU (2011c) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4):401–418CrossRefGoogle Scholar
  84. Shao M, Lu L, Wang H, Luo S, Duo Duo Ma D (2009) Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta 164:157–160CrossRefGoogle Scholar
  85. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167PubMedCrossRefGoogle Scholar
  86. Treuel L, Malissek M, Gebauer JS, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. Chem Phys Chem 11(14):3093–3099PubMedCrossRefGoogle Scholar
  87. Vertegel AA, Siegel RW, Dordic JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807PubMedCrossRefGoogle Scholar
  88. Vogt A, D’Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, Ivanchenko S, Nienhaus GU, Wiedenmann J (2008) A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One 3(11):1–8CrossRefGoogle Scholar
  89. Wang T, Bai J, Jiang X, Nienhaus GU (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. doi: 10.1021/nn203892h
  90. Watari F, Takashi N, Yokoyama A, Uo M, Akasaka M, Sato Y, Abe S, Totsuka Y, Tohji K (2009) Material nanosizing effect on living organism: non-specific, biointeractive, physical size effects. J R Soc Interf 6:371–388CrossRefGoogle Scholar
  91. Wiedenmann J, Schenk A, Röcker C, Girod A, Spindler KD, Nienhaus GU (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Prod Natl Acad Sci USA 99:11646–11651CrossRefGoogle Scholar
  92. Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol 6:270–277PubMedCrossRefGoogle Scholar
  93. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345PubMedCrossRefGoogle Scholar
  94. Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Hong Zhou Z, Liu H, Segura T, Tang Y, Lu Y (2009) A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol 5:48–53PubMedCrossRefGoogle Scholar
  95. Ye-Qin Z, Wang Y-F, Jiang X-D (2008) The application of nanoparticles in biochips. Recent Patents Biotechnol 2(1):55–59CrossRefGoogle Scholar
  96. Zhang J, Yan YB (2005) Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem 340:89–98PubMedCrossRefGoogle Scholar
  97. Zhou HS, Aoki S, Honma I, Hirasawa M, Nagamune T, Komiyama H (1997) Conformational change of protein cytochrome b-562 adsorbed on colloidal gold particles; absorption band shift. Chem Commun. 605–606Google Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2012

Authors and Affiliations

  1. 1.Institute of Applied Physics and Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Physical ChemistryUniversity of Duisburg-EssenEssenGermany
  3. 3.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations