Biophysical Reviews

, Volume 3, Issue 4, pp 171–184

Luminescent nanodiamonds for biomedical applications

  • Jana M. Say
  • Caryn van Vreden
  • David J. Reilly
  • Louise J. Brown
  • James R. Rabeau
  • Nicholas J. C. King


In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.


Nanodiamond Nitrogen-vacancy centre Fluorescence Imaging Biofunctionalisation Drug delivery 


  1. Aharonovich I, Castelletto S, Johnson BC, McCallum JC, Simpson DA, Greentree AD, Prawer S (2010) Chromium single-photon emitters in diamond fabricated by ion implantation. Phys Rev B 81:121201. doi:10.1103/PhysRevB.81.121201 CrossRefGoogle Scholar
  2. Akopyan LA, Zlotnikov MN, Rumyantsev BV, Abramova NL, Zobina MV, Mordvintseva TL (2004) Synthesis of explosive decompression-resistant rubbers with the use of detonation carbon. Phys Solid State 46(4):742–745. doi:10.1134/1.1711463 CrossRefGoogle Scholar
  3. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937. doi:10.1126/science.271.5251.933 CrossRefGoogle Scholar
  4. Ando T, Tanaka J, Ishii M, Kamo M, Sato Y, Ohashi N, Shimosaki S (1993) Diffuse reflectance Fourier-transform infrared study of the plasma-fluorination of diamond surfaces using a microwave discharge in CF4. J Chem Soc, Faraday Transactions 89(16):3105–3109. doi:10.1039/ft9938903105 CrossRefGoogle Scholar
  5. Ando T, Nishitani-Gamo M, Rawles RE, Yamamoto K, Kamo M, Sato Y (1996a) Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state. Diam Relat Mater 5:1136–1142. doi:10.1016/0925-9635(96)00529-8 CrossRefGoogle Scholar
  6. Ando T, Yamamoto K, Matsuzawa M, Takamatsu Y, Kawasaki S, Okino F, Touhara H, Kamo M, Sato Y (1996b) Direct interaction of elemental fluorine with diamond surfaces. Diam Relat Mater 5:1021–1025. doi:10.1016/0925-9635(96)00521-3 CrossRefGoogle Scholar
  7. Angus JC, Argoitia A, Gat R, Li Z, Sunkara M, Wang L, Wang Y (1993) Chemical vapour deposition of diamond. Phil Trans Roy Soc A 342(1664):195–208. doi:10.1098/rsta.1993.0014 CrossRefGoogle Scholar
  8. Artemov AS (2004) Polishing nanodiamonds. Phys Solid State 46(4):687–695. doi:10.1134/1.1711463 CrossRefGoogle Scholar
  9. Baidakova M, Vul’ A (2007) New prospects and frontiers of nanodiamond clusters. J Phys D: Appl Phys 40:6300–6311. doi:10.1088/0022-3727/40/20/S14 CrossRefGoogle Scholar
  10. Bakowicz K, Mitura S (2002) Biocompatibility of NCD. J Wide Bandgap Mater 9(4):261–272. doi:10.1106/152451102024429 CrossRefGoogle Scholar
  11. Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651. doi:10.1038/nature07278 PubMedCrossRefGoogle Scholar
  12. Balmer RS, Brandon JR, Clewes SL, Dhillon HK, Dodson JM, Friel I, Inglis PN, Madgwick TD, Markham ML, Mollart TP, Perkins N, Scarsbrook GA, Twitchen DJ, Whitehead AJ, Wilman JJ, Woollard SM (2009) Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys: Condens Matter 21:364221. doi:10.1088/0953-8984/21/36/364221 CrossRefGoogle Scholar
  13. Barnard AS, Sternberg M (2007) Crystallinity and surface electrostatics of diamond nanocrystals. J Mater Chem 17:4811–4819. doi:10.1039/b710189a CrossRefGoogle Scholar
  14. Barras A, Szunerits S, Marcon L, Monfilliette-Dupont N, Boukherroub R (2010) Functionalization of diamond nanoparticles using “click” chemistry. Langmuir 26(16):13168–13172. doi:10.1021/la101709q PubMedCrossRefGoogle Scholar
  15. Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291:175–197. doi:10.1006/abio.2000.5006 PubMedCrossRefGoogle Scholar
  16. Blamire AM (2008) The technology of MRI—the next 10 years? Br J Radiol 81:601–617. doi:10.1259/bjr/96872829 PubMedCrossRefGoogle Scholar
  17. Bondar’ VS, Puzyr’ AP (2004) Nanodiamonds for biological investigations. Phys Solid State 46(4):716–719. doi:10.1134/1.1711457 CrossRefGoogle Scholar
  18. Bondar’ VS, Pozdnyakova IO, Puzyr’ AP (2004) Applications of nanodiamonds for separation and purification of proteins. Phys Solid State 46(4):758–760. doi:10.1134/1.1711468 CrossRefGoogle Scholar
  19. Börsch M, Reuter R, Balasubramanian G, Erdmann R, Jelezko F, Wrachtrup J (2009) Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor F0F1-ATP synthase. In: Pro SPIE. p 71832. doi:10.1117/12.812720
  20. Bradac C, Gaebel T, Naidoo N, Sellars MJ, Twamley J, Brown LJ, Barnard AS, Plakhotnik T, Zvyagin AV, Rabeau JR (2010) Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat Nanotechnol 5:345–349. doi:10.1038/nnano.2010.56 PubMedCrossRefGoogle Scholar
  21. Bundy FP, Hall HT, Strong HM, Wentorf RHJ (1955) Man-made diamonds. Nature 176(4471):51–55. doi:10.1038/176051a0 CrossRefGoogle Scholar
  22. Burleson T, Yusuf N, Stanishevsky A (2009) Surface modification of nanodiamonds for biomedical application and analysis by infrared spectroscopy. J Ach Mat Manufac Eng 37(2):258–263Google Scholar
  23. Butler JE, Sumant AV (2008) The CVD of nanodiamond materials. Chem Vap Depos 14:145–160. doi:10.1002/cvde.200700037 CrossRefGoogle Scholar
  24. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352. doi:10.1002/chin.199947322 PubMedCrossRefGoogle Scholar
  25. Chang IP, Hwang KC, Chiang C-S (2008a) Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J Am Chem Soc 130:15476–15481. doi:10.1021/ja804253y PubMedCrossRefGoogle Scholar
  26. Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008b) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3:284–288. doi:10.1038/nnano.2008.99 PubMedCrossRefGoogle Scholar
  27. Chang IP, Hwang KC, J-aA H, Lin C-C, Hwu RJ-R, Horng J-C (2010) Facile surface functionalization of nanodiamonds. Langmuir 26(5):3685–3689. doi:10.1021/la903162v PubMedCrossRefGoogle Scholar
  28. Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93:2199–2208. doi:10.1088/0957-4484/19/20/205102 PubMedCrossRefGoogle Scholar
  29. Chen M, Pierstorff ED, Lam R, Li S-Y, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3(7):2016–2022PubMedCrossRefGoogle Scholar
  30. Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett 90:163903. doi:10.1063/1.2727557 CrossRefGoogle Scholar
  31. Christiaens P, Vermeeren V, Wenmackers S, Daenen M, Haenen K, Nesládek M, vandeVen M, Ameloot M, Michiels L, Wagner P (2006) EDC-mediated DNA attachment to nanocrystalline CVD diamond films. Biosens Bioelectron 22:170–177. doi:10.1016/j.bios.2005.12.013 PubMedCrossRefGoogle Scholar
  32. Chung P-H, Perevedentseva E, Tu J-S, Chang CC, Cheng C-L (2006) Spectroscopic study of bio-functionalized nanodiamonds. Diam Relat Mater 15:622–625. doi:10.1016/j.diamond.2005.11.019 CrossRefGoogle Scholar
  33. Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Physics of the Solid State 46(4):595–599. doi:10.1134/1.1711431 CrossRefGoogle Scholar
  34. Davies G, Hamer MF (1976) Optical studies of the 1.945 eV vibronic band in diamond. Proc Roy Soc Lond Ser A 348(1653):285–298CrossRefGoogle Scholar
  35. Davydov VA, Rakhmanina AV, Rols S, Agafonov V, Pulikkathara MX, Vander Wal RL, Khabashesku VN (2007) Size-dependent phase transition of diamond to graphite at high pressures. J Phys Chem C 111:12918–12925. doi:10.1021/jp073576k CrossRefGoogle Scholar
  36. Diep Lai N, Zheng D, Treussart F, Roch J-F (2010) Optical determination and magnetic manipulation of a single nitrogen-vacancy color center in diamond nanocrystal. Adv Natl Sci: Nanosci Nanotechnol 1:015014. doi:10.1088/2043-6254/1/1/015014 CrossRefGoogle Scholar
  37. Dolmatov VY (2006) Applications of Detonation Nanodiamond. In: Shenderova OA, Gruen DM (eds) Ultrananocrystalline Diamond: Synthesis, Properties, and Applications. William Andrew Publ, Norwich New York, pp 477–527Google Scholar
  38. Dyer HB, Du Preez L (1965) Irradiation damage in type I diamond. J Chem Phys 42(6):1898–1906. doi:10.1063/1.1696224 CrossRefGoogle Scholar
  39. Eidelman ED, Siklitsky VI, Sharonova LV, Yagovkina MA, Vul AY, Takahashi M, Inakuma M, Ozawa M, Ōsawa E (2005) A stable suspension of single ultrananocrystalline diamond particles. Diam Relat Mater 14:1765–1769. doi:10.1016/j.diamond.2005.08.057 CrossRefGoogle Scholar
  40. Faklaris O, Garrot D, Joshi V, Druon F, Boudou J-P, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4(12):2236–2239. doi:10.1002/smll.200800655 PubMedCrossRefGoogle Scholar
  41. Faklaris O, Garrot D, Joshi V, Boudou J-P, Sauvage T, Curmi PA, Treussart F (2009a) Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. J Eur Optical Soc: Rapid Publ 4:090325. doi:10.2971/jeos.2009.09035 Google Scholar
  42. Faklaris O, Joshi V, Irinopoulou T, Tauc P, Girard H, Gesset C, Senour M, Thorel A, Arnault J-C, Boudou J-P, A. Curmi P, Treussart F (2009b) Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXivorg, e-Print Archive:arXive:0907.1148v0901 [physics.optics]. Available at:
  43. Field JE (1992) The properties of natural and synthetic diamond. Academic Press, LondonGoogle Scholar
  44. Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104(3):727–732. doi:10.1073/pnas.0605409104 PubMedCrossRefGoogle Scholar
  45. Fucikova A, Valenta J, Pelant I, Brezina V (2009) Novel use of silicon nanocrystals and nanodiamonds in biology. Chem Pap 63(6):704–708. doi:10.2478/s11696-009-0075-x CrossRefGoogle Scholar
  46. Gaebel T, Popa I, Gruber A, Domhan M, Jelezko F, Wrachtrup J (2004) Stable single-photon source in the near infrared. New J Phys 6:98. doi:10.1088/1367-2630/6/1/098 CrossRefGoogle Scholar
  47. Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJC (2008) Ly6c + "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. The J Exp Med 205:2319–2337. doi:10.1084/jem.20080421 PubMedCrossRefGoogle Scholar
  48. Getts D, Turley D, Smith C, Harp C, McCarthy D, Feeney E, Getts M, Martin A, Luo X, Terry R, King N, Miller S (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+, IL-10-producing splenic macrophages and maintained by tregs. J Immunol 187(5) (in press)Google Scholar
  49. Gibson N, Shenderova O, Luo TJM, Moseenkov S, Bondar V, Puzyr A, Purtov K, Fitzgerald Z, Brenner DW (2009) Colloidal stability of modified nanodiamond particles. Diam Relat Mater 18:620–626. doi:10.1016/j.diamond.2008.10.049 CrossRefGoogle Scholar
  50. Grichko VP, Shenderova OA (2006) Nanodiamond: Designing the Bio-Platform. In: Shenderova OA, Gruen DM (eds) Ultrananocrystalline diamond: synthesis, properties, and applications. William Andrew Publ, Norwich, New York, pp 529–558Google Scholar
  51. Grichko V, Grishko V, Shenderova O (2006) Nanodiamond bullets and their biological targets. NanoBiotechnology 2:37–42. doi:10.1007/s12030-006-0005-8 CrossRefGoogle Scholar
  52. Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014. doi:10.1126/science.276.5321.2012 CrossRefGoogle Scholar
  53. Guan B, Wu L, Ren B, Zhi J (2006) An easy method for attaching nanodiamond particles to amine active glass-like carbon. Carbon 44:2858–2860. doi:10.1016/j.carbon.2006.06.011 CrossRefGoogle Scholar
  54. Härtl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M (2004) Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater 3:736–742. doi:10.1038/nmat1204 PubMedCrossRefGoogle Scholar
  55. Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17:1858–1866. doi:10.1016/j.diamond.2008.03.020 CrossRefGoogle Scholar
  56. Hoch MJR, Reynhardt EC (1988) Nuclear spin-lattice relaxation of dilute spins in semiconducting diamond. Phys Rev B 37(16):9222–9226. doi:10.1103/PhysRevB.37.9222 CrossRefGoogle Scholar
  57. Huang L-CL, Chang H-C (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20:5879–5884. doi:10.1021/la0495736 PubMedCrossRefGoogle Scholar
  58. Huang H, Pierstorff E, Osawa E, Ho D (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7(11):3305–3314. doi:10.1021/nl071521o PubMedCrossRefGoogle Scholar
  59. Huang H, Pierstorff E, Osawa E, Ho D (2008) Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2(2):203–212. doi:10.1021/nn7000867 PubMedCrossRefGoogle Scholar
  60. Hui YY, Cheng C-L, Chang H-C (2010) Nanodiamonds for optical bioimaging. J Phys D: Appl Phys 43:374021. doi:10.1088/0022-3727/43/37/374021 CrossRefGoogle Scholar
  61. Ida S, Tsubota T, Tanii S, Nagata M, Matsumoto Y (2003) Chemical modification of the diamond surface using benzoyl peroxide and dicarboxylic acids. Langmuir 19:9693–9698. doi:10.1021/la034133k CrossRefGoogle Scholar
  62. Ikeda Y, Saito T, Kusakabe K, Morooka S, Maeda H, Taniguchi Y, Fujiwara Y (1998) Halogenation and butylation of diamond surfaces by reactions in organic solvents. Diam Relat Mater 7:830–834. doi:10.1016/S0925-9635(97)00304-X CrossRefGoogle Scholar
  63. John P, Polwart N, Troupe CE, Wilson JIB (2003) The oxidation of diamond: the geometry and stretching frequency of carbonyl on the (100) surface. J Am Chem Soc 125:6600–6601. doi:10.1021/ja029586a PubMedCrossRefGoogle Scholar
  64. Kalish R, Uzan-Saguy R, Philosph B, Richter V, Lagrange JP, Gheeraert E, Deneuville A, Collins AT (1997) Nitrogen doping of diamond by ion implantation. Diam Relat Mater 6:516–520. doi:10.1016/S0925-9635(96)00657-7 CrossRefGoogle Scholar
  65. Khabashesku VN, Margrave JL, Barrera EV (2005) Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam Relat Mater 14:859–866. doi:10.1016/j.diamond.2004.11.006 CrossRefGoogle Scholar
  66. Knickerbocker T, Strother T, Schwartz MP, Russell JN Jr, Butler J, Smith LM, Hamers RJ (2003) DNA-modified diamond surfaces. Langmuir 19:1938–1942. doi:10.1021/la026279+ CrossRefGoogle Scholar
  67. Kong X, Huang LCL, Liau S-CV, Han C-C, Chang H-C (2005a) Polylysine-coated diamond nanocrystals for MALDI-TOF nass analysis of DNA oligonucleotides. Anal Chem 77:4273–4277. doi:10.1021/ac050213c PubMedCrossRefGoogle Scholar
  68. Kong XL, Huang LCL, Hsu C-M, Chen W-H, Han C-C, Chang H-C (2005b) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 77:259–265. doi:10.1021/ac048971a PubMedCrossRefGoogle Scholar
  69. Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru S, Garrell RL, Torbati S, Freitas SSF, Chow G-M (1995) Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjug Chem 6(5):507–511. doi:10.1021/bc00035a001 PubMedCrossRefGoogle Scholar
  70. Kremers G-J, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124(2):157–160. doi:10.1242/jcs.072744 PubMedCrossRefGoogle Scholar
  71. Krueger A (2008) New carbon materials: biological applications of functionalized nanodiamond materials. Chem Eur J 14:1382–1390. doi:10.1002/chem.200700987 CrossRefGoogle Scholar
  72. Krueger A, Boedeker T (2008) Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam Relat Mater 17:1367–1370. doi:10.1038/nmat1204 CrossRefGoogle Scholar
  73. Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L (2007) Deagglomeration and functionalisation of detonation diamond. Phys Status Solidi (A) 204(9):2881–2887. doi:10.1002/pssa.200776330 CrossRefGoogle Scholar
  74. Krueger A, Stegk J, Liang Y, Lu L, Jarre G (2008) Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24:4200–4204. doi:10.1021/la703482v PubMedCrossRefGoogle Scholar
  75. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ AY, Ōsawa E (2005) Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43(8):1722–1730. doi:10.1016/j.carbon.2005.02.020 CrossRefGoogle Scholar
  76. Krüger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem 16:2322–2328. doi:10.1039/b601325b CrossRefGoogle Scholar
  77. Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85(2):290–293. doi:10.1103/PhysRevLett.85.290 PubMedCrossRefGoogle Scholar
  78. Lee SF, Osborne MA (2007) Photodynamics of a single quantum dot: fluorescence activation, enhancement, intermittency, and decay. J Am Chem Soc 129:8936–8937. doi:10.1021/ja071876+ PubMedCrossRefGoogle Scholar
  79. Li Y-q, Zhou X-p (2010) Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: An investigation of the uptake mechanism. Diam Relat Mater 19:1163–1167. doi:10.1016/j.diamond.2010.05.003 CrossRefGoogle Scholar
  80. Liang Y, Ozawa M, Krueger A (2009) A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3(8):2288–2296. doi:10.1021/nn900339s PubMedCrossRefGoogle Scholar
  81. Lidke DS, Arndt-Jovin DJ (2004) Imaging takes a quantum leap. Physiology 19:322–325. doi:10.1152/physiol.00030.2004 PubMedCrossRefGoogle Scholar
  82. Lim T-S, Fu C-C, Lee K-C, Lee H-Y, Chen K, Cheng W-F, Pai WW, Chang H-C, Fann W (2009) Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. PCCP: Phys Chem Chem Phys 11:1508–1514. doi:10.1039/b817471g PubMedCrossRefGoogle Scholar
  83. Liu YL, Sun KW (2010) Protein functionalized nanodiamond arrays. Nanoscale Res Lett 5:1045–1050. doi:10.1007/s11671-010-9600-7 PubMedCrossRefGoogle Scholar
  84. Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater 16:3924–3930. doi:10.1021/cm048875q CrossRefGoogle Scholar
  85. Liu K-K, Cheng C-L, Chang C-C, Chao J-I (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18:325102. doi:10.1088/0957-4484/18/32/325102 CrossRefGoogle Scholar
  86. Liu K-K, Chen M-F, Chen P-Y, Lee TJF, Cheng C-L, Chang C-C, Ho Y-P, Chao J-I (2008) Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19:205102. doi:10.1088/0957-4484/19/20/205102 PubMedCrossRefGoogle Scholar
  87. Liu K-K, Wang C-C, Cheng C-L, Chao J-I (2009) Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30(26):4249–4259. doi:10.1016/j.biomaterials.2009.04.056 PubMedCrossRefGoogle Scholar
  88. Liu K-K, Zheng W-W, Wang C-C, Chiu Y-C, Cheng C-L, Lo Y-S, Chen C, Chao J-I (2010) Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21:315106. doi:10.1088/0957-4484/21/31/315106 PubMedCrossRefGoogle Scholar
  89. Lu M, Knickerbocker T, Cai W, Yang W, Hamers RJ, Smith LM (2004) Invasive cleavage reactions on DNA-modified diamond surfaces. Biopolymers 73(5):606–613. doi:10.1002/bip.20007 PubMedCrossRefGoogle Scholar
  90. Mangeney C, Qin Z, Dahoumane SA, Adenier A, Herbst F, Boudou J-P, Pinson J, Chehimi MM (2008) Electroless ultrasonic functionalization of diamond nanoparticles using aryl diazonium salts. Diam Relat Mater 17:1881–1887. doi:10.1016/j.diamond.2008.04.003 CrossRefGoogle Scholar
  91. Manus LM, Mastarone DJ, Waters EA, Zhang X-Q, Schultz-Sikma EA, MacRenaris KW, Ho D, Meade TJ (2010) Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett 10:484–489. doi:10.1021/nl903264h PubMedCrossRefGoogle Scholar
  92. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Gurudev Dutt MV, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647. doi:10.1038/nature07279 PubMedCrossRefGoogle Scholar
  93. Miller JB, Brown DW (1996) Photochemical modification of diamond surfaces. Langmuir 12:5809–5817. doi:10.1021/la9407166 CrossRefGoogle Scholar
  94. Mitev D, Dimitrova R, Spassova M, Minchev C, Stavrev S (2007) Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diam Relat Mater 16:776–780. doi:10.1016/j.diamond.2007.01.005 CrossRefGoogle Scholar
  95. Mitura S, Bakowicz K, Niedzielski P, Mitura E, Karczemska A, Sokolowska A, Szmidt J, Hassard J (2001) Inertness of diamond-truth or false. Paper presented at the 3rd International Conference on Novel Applications of Wide Bandgap Layers, 2002. IEEE Zakopane, Poland, pp 84–87Google Scholar
  96. Mkandawire M, Pohl A, Gubarevich T, Lapina V, Appelhans D, Rödel G, Pompe W, Schreiber J, Opitz J (2009) Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. J Biophotonics 2(10):596–606. doi:10.1002/jbio.200910002 PubMedCrossRefGoogle Scholar
  97. Mochalin VN, Gogotsi Y (2009) Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc 131:4594–4595. doi:10.1021/ja9004514 PubMedCrossRefGoogle Scholar
  98. Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010a) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett 10(9):3692–3699. doi:10.1021/nl1021909 PubMedCrossRefGoogle Scholar
  99. Mohan N, Tzeng Y-K, Yang L, Chen Y-Y, Hui YY, Fang C-Y, Chang H-C (2010b) Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv Mater 22:843–847. doi:10.1002/adma.200901596 PubMedCrossRefGoogle Scholar
  100. Nakamura T, Ishihara M, Ohana T, Koga Y (2003) Chemical modification of diamond powder using photolysis of perfluoroazooctane. Chem Commun 900–901. doi:10.1039/B211807F
  101. Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7(12):3588–3591. doi:10.1021/nl0716303 PubMedCrossRefGoogle Scholar
  102. Nguyen T-T-B, Chang H-C, Wu VW-K (2007) Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam Relat Mater 16:872–876. doi:10.1016/j.diamond.2007.01.030 CrossRefGoogle Scholar
  103. Nordsletten L, Høgåsen AKM, Konttinen YT, Santavirta S, Aspenberg P, Aasen AO (1996) Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings. Biomaterials 17:1521–1527. doi:10.1016/0142-9612(96)89777-8 PubMedCrossRefGoogle Scholar
  104. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642. doi:10.1021/ja063303n PubMedCrossRefGoogle Scholar
  105. Petrov I, Shenderova O, Grishko V, Grichko V, Tyler T, Cunningham G, McGuire G (2007) Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam Relat Mater 16:2098–2103. doi:10.1016/j.diamond.2007.05.013 CrossRefGoogle Scholar
  106. Pramatarova L, Dimitrova R, Pecheva E, Spassov T, Dimitrova M (2007) Peculiarities of hydroxyapatite/nanodiamond composites as novel implants. J Phys Conf Ser 93:012049. doi:10.1088/1742-6596/93/1/012049 CrossRefGoogle Scholar
  107. Prawer S, Greentree AD (2008) Diamond for quantum computing. Science 320:1601–1602. doi:10.1126/science.1158340 PubMedCrossRefGoogle Scholar
  108. Purtov KV, Bondar VS, Puzyr AP (2001) Supramolecular structure of nanodiamond particles and obelin built up on a two-dimensional plate. Dokl Biochem Biophys 380:339–342. doi:10.1023/A:1012396327027 PubMedCrossRefGoogle Scholar
  109. Purtov KV, Petunin AI, Burov AE, Puzyr AP, Bondar VS (2010) Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res Lett 5:631–636. doi:10.1007/s11671-010-9526-0 PubMedCrossRefGoogle Scholar
  110. Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Mogilnaya OA, Bondar VS (2007) Nanodiamonds with novel properties: A biological study. Diam Relat Mater 16:2124–2128. doi:10.1016/j.diamond.2007.07.025 CrossRefGoogle Scholar
  111. Puzyr’ AP, Pozdnyakova IO, Bondar’ VS (2004) Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys Solid State 46(4):761–763. doi:10.1134/1.1711469 CrossRefGoogle Scholar
  112. Puzyr’ AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar’ VS (2007) The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl Biochem Biophys 417:299–301. doi:10.1134/S1607672907060026 CrossRefGoogle Scholar
  113. Rabeau JR, Chin YL, Prawer S, Jelezko F, Gaebel T, Wrachtrup J (2005) Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl Phys Lett 86:131926. doi:10.1063/1.1896088 CrossRefGoogle Scholar
  114. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.1038/NMEtH.1248 PubMedCrossRefGoogle Scholar
  115. Reynhardt EC, Terblanche CJ (1997) 13 C relaxation in natural diamond. Chem Phys Lett 269:464–468. doi:10.1016/S0009-2614(97)00309-6 CrossRefGoogle Scholar
  116. Rezek B, Shin D, Nakamura T, Nebel CE (2006) Geometric properties of covalently bonded DNA on single-crystalline diamond. J Am Chem Soc 128:3884–3885. doi:10.1021/ja058181y PubMedCrossRefGoogle Scholar
  117. Saini G, Yang L, Lee ML, Dadson A, Vail MA, Linford MR (2008) Amino-modified diamond as a durable stationary phase for solid-phase extraction. Anal Chem 80:6253–6259. doi:10.1021/ac800209c PubMedCrossRefGoogle Scholar
  118. Schrand AM, Huang H, Carlson C, Schlager JJ, Ōsawa E, Hussain SM, Dai L (2007) Are diamond nanoparticles cytotoxic? J Phys Chem B 111:2–7. doi:10.1021/jp066387v PubMedCrossRefGoogle Scholar
  119. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci34:18–74. doi:10.1080/10408430902831987 CrossRefGoogle Scholar
  120. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi:10.1038/NMETH819 PubMedCrossRefGoogle Scholar
  121. Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G (2006) Modification of detonation nanodiamonds by heat treatment in air. Diam Relat Mater 15:1799–1803. doi:10.1016/j.diamond.2006.08.032 CrossRefGoogle Scholar
  122. Shimkunas RA, Robinson E, Lam R, Lu S, Xu X, Zhang X-Q, Huang H, Osawa E, Ho D (2009) Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30:5720–5728. doi:10.1016/j.biomaterials.2009.07.004 PubMedCrossRefGoogle Scholar
  123. Smith AH, Robinson EM, Zhang X-Q, Chow EK, Lin Y, Osawa E, Xi J, Ho D (2011) Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 3(7):2844–2848. doi:10.1039/c1nr10278h PubMedCrossRefGoogle Scholar
  124. Spear KE, Dismukes JP (1994) Synthetic diamond: emerging CVD science and technology, vol 25. Wiley-IEEE Press, PiscatawayGoogle Scholar
  125. Steinmüller-Nethl D, Kloss FR, Najam-Ul-Haq M, Rainer M, Larsson K, Linsmeier C, Köhler G, Fehrer C, Lepperdinger G, Liu X, Memmel N, Bertel E, Huck CW, Gassner R, Bonn G (2006) Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials 27:4547–4556. doi:10.1016/j.biomaterials.2006.04.036 PubMedCrossRefGoogle Scholar
  126. Strother T, Knickerbocker T, Russell JN Jr, Butler JE, Smith LM, Hamers RJ (2002) Photochemical functionalization of diamond films. Langmuir 18:968–971. doi:10.1021/la0112561 CrossRefGoogle Scholar
  127. Sushchev VG, Dolmatov VY, Marchukov VA, Veretennikova MV (2008) Fundamentals of chemical purification of detonation nanodiamond soot using nitric acid. J Superhard Mater 30(5):297–304. doi:10.3103/S1063457608050031 CrossRefGoogle Scholar
  128. Takahashi K, Tanga M, Takai O, Okamura H (2003) DNA preservation using diamond chips. Diam Relat Mater 12:572–576. doi:10.1016/S0925-9635(03)00070-0 CrossRefGoogle Scholar
  129. Thoms BD, Owens MS, Butler JE, Spiro C (1994) Production and characterization of smooth, hydrogen-terminated diamond C(100). Appl Phys Lett 65(23):2957–2959. doi:10.1063/1.112503 CrossRefGoogle Scholar
  130. Tomljenovic-Hanic S, Greentree AD, de Sterke CM, Prawer S (2009) Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs. Optics Express 17(8):6465–6475. doi:10.1364/OE.17.006465 PubMedCrossRefGoogle Scholar
  131. Treussart F, Jacques V, Wu E, Gacoin T, Grangier P, Roch J-F (2006) Photoluminescence of single colour defects in 50 nm diamond nanocrystals. Phys B 376–377:926–929. doi:10.1016/j.physb.2005.12.232 CrossRefGoogle Scholar
  132. Tsubota T, Tanii S, Ida S, Nagata M, Matsuzawa M (2003) Chemical modification of diamond surface with various carboxylic acids by radical reaction in liquid phase. Diam Relat Mater 13:1093–1097. doi:10.1016/j.diamond.2003.10 CrossRefGoogle Scholar
  133. Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett 351:105–108. doi:10.1016/S0009-2614(01)01362-8 CrossRefGoogle Scholar
  134. Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20:425103. doi:10.1088/0957-4484/20/42/425103 PubMedCrossRefGoogle Scholar
  135. Wee T-L, Mau Y-W, Fang C-Y, Hsu H-L, Han C-C, Chang H-C (2009) Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diam Relat Mater 18:567–573. doi:10.1016/j.diamond.2008.08.012 CrossRefGoogle Scholar
  136. Wei L, Zhang W, Lu H, Yang P (2010) Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta 80:1298–1304. doi:10.1016/j.talanta.2009.09.029 PubMedCrossRefGoogle Scholar
  137. Weissleder R (1991) Target-specific superparamagnetic MR contrast agent. Magn Reson Med 22(2):209–212. doi:10.1002/mrm.1910220209 PubMedCrossRefGoogle Scholar
  138. Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212:609–614PubMedGoogle Scholar
  139. Weng M-F, Chiang S-Y, Wang N-S, Niu H (2009) Fluorescent nanodiamonds for specifically targeted bioimaging: Application to the interaction of transferrin with transferrin receptor. Diam Relat Mater 18:587–591. doi:10.1016/j.diamond.2008.07.012 CrossRefGoogle Scholar
  140. Williams OA, Hees J, Dieker C, Jäger W, Kirste L, Nebel CE (2010) Size-dependent reactivity of diamond nanoparticles. ACS Nano 4(8):4824–4830. doi:10.1021/nn100748k PubMedCrossRefGoogle Scholar
  141. Wu E, Jacques V, Treussart F, Zeng H, Grangier P, Roch J-F (2006) Single-photon emission in the near infrared from diamond colour centre. J Lumin 119–120:19–23. doi:10.1016/j.jlumin.2005.12.052 CrossRefGoogle Scholar
  142. Xing Y, Dai L (2009) Nanodiamonds for nanomedicine. Nanomedicine 4(2):207–218. doi:10.2217/17435889.4.2.207 PubMedCrossRefGoogle Scholar
  143. Xu X, Yu Z, Zhu Y, Wang B (2005) Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diam Relat Mater 14:206–212. doi:10.1016/j.diamond.2004.11.004 CrossRefGoogle Scholar
  144. Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JNJ, Smith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1:253–257. doi:10.1038/nmat779 PubMedCrossRefGoogle Scholar
  145. Yeap WS, Tan YY, Loh KP (2008) Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80(12):4659–4665. doi:10.1021/ac800009v PubMedCrossRefGoogle Scholar
  146. Yeap WS, Chen S, Loh KP (2009) Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25:185–191. doi:10.1021/la8029787 PubMedCrossRefGoogle Scholar
  147. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605. doi:10.1021/ja0567081 PubMedCrossRefGoogle Scholar
  148. Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y (2009) Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater 18:95–100. doi:10.1016/j.diamond.2008.10.031 CrossRefGoogle Scholar
  149. Yuan Y, Wang X, Jia G, Liu J-H, Wang T, Gu Y, Yang S-T, Zhen S, Wang H, Liu Y (2010) Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater 19:291–299. doi:10.1016/j.diamond.2009.11.022 CrossRefGoogle Scholar
  150. Zaitsev AM (2001) Optical Properties of Diamond. Springer, BerlinGoogle Scholar
  151. Zhang B, Li Y, Fang C-Y, Chang C-C, Chen C-S, Chen Y-Y, Chang H-C (2009a) Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5(23):2716–2721. doi:10.1002/smll.200900725 PubMedCrossRefGoogle Scholar
  152. Zhang X-Q, Chen M, Lam R, Xu X, Osawa E, Ho D (2009b) Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3(9):2609–2016. doi:10.1021/nn900865g PubMedCrossRefGoogle Scholar
  153. Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z (2010) Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett 198:237–243. doi:10.1016/j.toxlet.2010.07.001 PubMedCrossRefGoogle Scholar
  154. Zheng W-W, Hsieh Y-H, Chiu Y-C, Cai S-J, Cheng C-L, Chen C (2009) Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J Mater Chem 19(44):8432–8441. doi:10.1039/b904302k CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2011

Authors and Affiliations

  • Jana M. Say
    • 1
    • 4
  • Caryn van Vreden
    • 2
  • David J. Reilly
    • 3
  • Louise J. Brown
    • 4
  • James R. Rabeau
    • 1
  • Nicholas J. C. King
    • 2
  1. 1.ARC Centre of Excellence for Engineered Quantum Systems, Department of Physics and AstronomyMacquarie UniversitySydneyAustralia
  2. 2.School of Medical Sciences, Bosch Institute, Department of PathologyThe University of SydneySydneyAustralia
  3. 3.ARC Centre of Excellence for Engineered Quantum Systems, The School of PhysicsThe University of SydneySydneyAustralia
  4. 4.Department of Chemistry and Biomolecular SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations