Biophysical Reviews

, 3:155 | Cite as

Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications

  • Dan P. PopescuEmail author
  • Lin-P’ing Choo-Smith
  • Costel Flueraru
  • Youxin Mao
  • Shoude Chang
  • John Disano
  • Sherif Sherif
  • Michael G. Sowa


The advances made in the last two decades in interference technologies, optical instrumentation, catheter technology, optical detectors, speed of data acquisition and processing as well as light sources have facilitated the transformation of optical coherence tomography from an optical method used mainly in research laboratories into a valuable tool applied in various areas of medicine and health sciences. This review paper highlights the place occupied by optical coherence tomography in relation to other imaging methods that are used in medical and life science areas such as ophthalmology, cardiology, dentistry and gastrointestinal endoscopy. Together with the basic principles that lay behind the imaging method itself, this review provides a summary of the functional differences between time-domain, spectral-domain and full-field optical coherence tomography, a presentation of specific methods for processing the data acquired by these systems, an introduction to the noise sources that plague the detected signal and the progress made in optical coherence tomography catheter technology over the last decade.


Optical coherence tomography Biomedical applications Signal noise Time-domain Fourier-domain Full-field system Catheter technology 


  1. Akiba M, Chan KP, Tanno N (2003) Full-field optical coherence tomography by two- dimensional heterodyne detection with a pair of CCD cameras. Opt Lett 28:816–818PubMedCrossRefGoogle Scholar
  2. Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA (2001) Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil 28:1092–1093PubMedCrossRefGoogle Scholar
  3. Amaechi BT, Podoleanu A, Higham SM, Jackson DA (2003) Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt 8:642–647PubMedCrossRefGoogle Scholar
  4. Baumgartner A, Dichtl S, Hitzenberger CK, Sattmann H, Robl B, Moritz A, Fercher AF, Sperr W (2000) Polarization-sensitive optical coherence tomography of dental structures. Caries Res 34:59–69PubMedCrossRefGoogle Scholar
  5. Brandenburg R, Haller B, Hauger C (2003) Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT). Opt Commun 227:203–211CrossRefGoogle Scholar
  6. Bonnema GT, Cardinal KO, Williams SK, Barton JK (2009) A concentric three element radial scanning optical coherence tomography endoscope. J Biophoton 2:353–356CrossRefGoogle Scholar
  7. Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG (1999) High- resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res 82:275–284PubMedCrossRefGoogle Scholar
  8. Chang S, Liu X, Cai X, Grover CP (2005) Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving. Opt Comm 246:579–585CrossRefGoogle Scholar
  9. Chang S, Cai X, Flueraru C (2007) An efficient algorithm used for full-field optical coherence tomography. Opt Lasers Eng 45:1170–1176CrossRefGoogle Scholar
  10. Chang S, Murdock E, Mao Y, Flueraru C (2010) Optical catheter with rotary optical cap. US patent 662:447Google Scholar
  11. Chinn SR, Swanson EA, Fujimoto JG (1997) Optical coherence tomography using a frequency-tunable optical source. Opt Lett 22:340–342PubMedCrossRefGoogle Scholar
  12. Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt Expr 11:2183–2189CrossRefGoogle Scholar
  13. Choo-Smith LP, Qiu P, Popescu DP, Hewko M, Dong CCS, Cleghorn BM, Sowa MG (2008) Determining depths of incipient caries from OCT imaging. J Dent Res 87(Spec Iss B):2838Google Scholar
  14. Cilesiz L, Fockens P, Kerindongo R, Faber D, Tytgat G, Kate FT, Leuwen TV (2002) Comparative optical coherence tomography imaging of human esophagus: How accurate is localization of the muscularis mucosae? Gastrointest Endosc 56:852–857PubMedCrossRefGoogle Scholar
  15. Colston BW Jr, Everett MJ, Sathyam US, DaSilva LB, Otis LL (2000) Imaging of the oral cavity using optical coherence tomography. Monogr Oral Sci 17:32–55PubMedCrossRefGoogle Scholar
  16. Das A, Sivak MV Jr, Chak A, Wong RC, Westphal V, Rollins AM, Willis J, Isenberg G, Izatt JA (2001) High-resolution endoscopic imaging of the GI tract: A comparative study of optical coherence tomography versus high-frequency catheter probe EUS. Gastrointest Endosc 54:219–224PubMedCrossRefGoogle Scholar
  17. Dolin LS (1998) A theory of optical coherence tomography. Radiophys Quant Electron 41:850–873CrossRefGoogle Scholar
  18. Dubois A (2001) Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets. J Opt Soc Am A 18:1972–1979CrossRefGoogle Scholar
  19. Dubois A (2004) Effects of phase change on reflection in phase-measuring interference microscopy. Appl Opt 43:1503–1507PubMedCrossRefGoogle Scholar
  20. Dubois A, Vabre L, Boccara AC, Beaurepaire E (2002) High-resolution ful-field optical coherence tomography with a Linnik microscope. Appl Opt 41:805–812PubMedCrossRefGoogle Scholar
  21. Falk GW, Rice TW, Goldblum JR, Richter JE (1999) Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett’s esophagus with high-grade dysplasia. Gastrointest Endosc 49:170–176PubMedCrossRefGoogle Scholar
  22. Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitz D, Warren J (1998) In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 3:239–250PubMedCrossRefGoogle Scholar
  23. Fercher AF (1996) Optical coherence tomography. J Biomed Opt 1:157–173CrossRefGoogle Scholar
  24. Fercher AF, Roth E (1986) Opthalmic laser interferometry. Proc SPIE 658:48–51Google Scholar
  25. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188PubMedCrossRefGoogle Scholar
  26. Fercher FA, Hitzenberger CK, Drexler W, Kemp G, Sattman H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116:113–114PubMedGoogle Scholar
  27. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Comm 117:43–48CrossRefGoogle Scholar
  28. Flueraru C, Popescu DP, Mao Y, Chang S, Sowa MG (2010) Added soft tissue contrast using the signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue. Phys Med Biol 55:2317–2331PubMedCrossRefGoogle Scholar
  29. Fried D, Xie J, Shafi S, Featherstone JDB, Breunig TM, Le C (2002) Imaging caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 7:618–627PubMedCrossRefGoogle Scholar
  30. Fried D, Featherstone JD, Darling CL, Jones RS, Ngaotheppitak P, Buhler CM (2005) Early caries imaging and monitoring with near-infrared light. Dent Clin North Am 49:771–793PubMedCrossRefGoogle Scholar
  31. Fujimoto JG, De Silvestri S, Ippen EP, Puliafito CA, Margolis R, Oseroff A (1986) Femtosecond optical ranging in biological systems. Opt Lett 11:150–152PubMedCrossRefGoogle Scholar
  32. Goldberg BD, Iftimia NV, Bressner JE, Pitman MB, Halpern E, Bouma BE, Tearney GJ (2008) Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. J Biomed Opt 13:014014PubMedCrossRefGoogle Scholar
  33. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG (1997) Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:Forsterite laser. Opt Lett 22:1704–1706PubMedCrossRefGoogle Scholar
  34. Greivenkamp JE, Bruning JH (1992) Phase shift interferometers. In: Optical Shop Testing, 2nd edn. Wiley, New York, pp 501–598Google Scholar
  35. Hausler G, Lindner MW (1998) "Coherence radar" and "spectral radar" - new tools for dermatological diagnosis. J Biomed Opt 3:21–31CrossRefGoogle Scholar
  36. Herz PR, Chen Y, Aguirre AD, Schneider K, Hsiung P (2004) Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. Opt Lett 29:2261–2263PubMedCrossRefGoogle Scholar
  37. Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A (2001) Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express 9:780–790PubMedCrossRefGoogle Scholar
  38. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRefGoogle Scholar
  39. Iftimia NV, Bouma BE, Pitman MB, Goldberg B, Bressner J, Tearney GJ (2005) A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Rev Sci Instrum 76:064301CrossRefGoogle Scholar
  40. Isenberg G, Sivak MV, Chak A, Wong RCK, Willis JE, Wolf B, Rowland DY, Das A, Rollins A (2005) Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Gastrointest Endosc 62:825–831PubMedCrossRefGoogle Scholar
  41. Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG (1994) Optical coherence microscopy in scattering media. Opt Lett 19:590–592PubMedCrossRefGoogle Scholar
  42. Izatt JA, Kulkarni MD, Wang HW, Kobayashi K, Sivak MV Jr (1996) Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J Sel Top Quant Electron 2:1017–1028CrossRefGoogle Scholar
  43. Jafri MS, Farhang S, Tang RS, Desai N, Fishman PS, Rohwer RG, Tang C, Schmitt JM (2005) Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt 10:051603PubMedCrossRefGoogle Scholar
  44. Jang IK, Hursting MJ (2005) When heparins promote thrombosis: review of heparin- induced thrombocytopenia. Circulation 111:2671–2683PubMedCrossRefGoogle Scholar
  45. Jang IK, Tearney GJ, Bouma BE (2001) Visualization of tissue prolapsed between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104:2754PubMedCrossRefGoogle Scholar
  46. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609PubMedCrossRefGoogle Scholar
  47. Kino GS, Chim SC (1990) Mirau correlation microscope. Appl Opt 29:3775–3783PubMedCrossRefGoogle Scholar
  48. Kobayashi K, Izatt JA, Kulkarni MD, Willis J, Sivak MV Jr (1998) High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography. Preliminary results. Gastrointest Endosc 47:515–523PubMedCrossRefGoogle Scholar
  49. Leitgeb R, Hitzenberger CK, Fercher AF (2003) Performance of Fourier domain vs. time domain optical coherence tomography. Opt Exp 11:889–894CrossRefGoogle Scholar
  50. Lexer F, Hitzenberger CK, Fercher AF, Kulhavy M (1997) Wavelength-tuning interferometry of intraocular distances. Appl Opt 36:6548–6553PubMedCrossRefGoogle Scholar
  51. Li H, Standish BA, Mariampillai A, Munce NR, Mao Y, Chiu S, Marcon NE, Wilson BC, Vitkin A, Yang VXD (2006) Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers Surg Med 38:754–761PubMedCrossRefGoogle Scholar
  52. Liu X, Cobb MJ, Chen Y, Kimmey MB, Li X (2004) Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt Lett 29:1763–1765PubMedCrossRefGoogle Scholar
  53. Mao Y, Chang S, Sherif S, Flueraru C (2007) Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl Opt 46:5887–5894PubMedCrossRefGoogle Scholar
  54. Mao Y, Chang S, Flueraru C (2010) Fiber lenses for ultra-small probes used in optical coherent tomography. J Biomed Sci Eng 3:27–34CrossRefGoogle Scholar
  55. Maragos P, Kaiser JF, Quatieri TF (1993) On amplitude and frequency demodulation using energy operators. IEEE Trans Signal Process 41:1532–1550CrossRefGoogle Scholar
  56. Min EJ, Na J, Ryu SY, Lee BH (2009) Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging. Opt Lett 34:1897–1899PubMedCrossRefGoogle Scholar
  57. Morkel PR, Laming R, Payne DN (1990) Noise characteristics of high-power doped-fiber superluminescent sources. Electron Lett 26:96–97CrossRefGoogle Scholar
  58. Munce NR, Yang VXD, Standish B, Qiang B, Mao Y, Li H, Butany J, Courtney BK, Graham JJ, Dick AJ, Strauss BH, Wright GA, Vitkin IA (2006) Ex vivo imaging of chronic total occlusions using forward-looking optical coherence tomography. Lasers Surg Med 39:28–35CrossRefGoogle Scholar
  59. Munce NR, Mariampillai A, Standish BA, Pop M, Anderson KJ, Liu GY, Luk T, Courtney BK, Wright GA, Vitkin IA, Yang VXD (2008) Electrostatic forward- viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter. Opt Lett 33:657–659PubMedCrossRefGoogle Scholar
  60. Murphy E (2008) The Evolution of Spectral Domain OCT.
  61. Ngaotheppitak P, Darling CL, Fried D (2005) Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med 37:78–88PubMedCrossRefGoogle Scholar
  62. Novak J (2003) Five-step phase-shifting algorithms with unknown values of phase shift. Optik-Intl Light Electr Opt 114:63–68CrossRefGoogle Scholar
  63. Oliver BM (1965) Thermal and quantum noise. Proc IEEE 53:436–454CrossRefGoogle Scholar
  64. Takada K (1998) Noise in optical low coherence reflectometry. IEEE J Quant Elect 34:1098–1108CrossRefGoogle Scholar
  65. Pan Y, Birngruber R, Rosperich J, Engelhardt R (1995) Low-coherence optical tomography in turbid tissue: theoretical analysis. Appl Opt 34:6564–6574PubMedCrossRefGoogle Scholar
  66. Patel NA, Stamper DL, Brezinski ME (2005) Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc Intervent Radiol 28:1–9PubMedCrossRefGoogle Scholar
  67. Petersen CL, McNamara EI, Lamport RB, Atlas M, Schmitt JM, Swanson EA, Magnin P (2005) Scanning miniature optical probes with optical distortion correction and rotational control. US Patent, 6891984Google Scholar
  68. Podoleanu AG (2000) Unbalanced versus balanced operation in an optical coherence tomography system. Appl Opt 39:173–182PubMedCrossRefGoogle Scholar
  69. Podoleanu AG, Jackson DA (1999) Noise analysis of a combined optical coherence tomography and a confocal scanning ophthalmoscope. Appl Opt 38:2116–2127PubMedCrossRefGoogle Scholar
  70. Popescu DP, Sowa MG, Hewko MD, Choo-Smith L-P (2008) Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J Biomed Opt 13:054053. doi: 10.1117/1.2992129 PubMedCrossRefGoogle Scholar
  71. Popescu DP, Flueraru C, Mao Y, Chang S, Sowa MG (2010) Signal attenuation and box- counting fractal analysis of optical coherence images of arterial tissue. Biomed Opt Express 1:268–277PubMedCrossRefGoogle Scholar
  72. Reed WA, Yan MF, Schnitzer MJ (2002) Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Opt Lett 27:1794–1796PubMedCrossRefGoogle Scholar
  73. Regar E, Schaar JA, Mont E, Virmani R, Serruys PW (2003) Optical coherence tomography. Cardiovasc Radiat Med 4:198–204PubMedCrossRefGoogle Scholar
  74. Rollins AM, Izatt JA (1999) Optical interferometer designs for optical coherence tomography. Opt Lett 24:1484–1486PubMedCrossRefGoogle Scholar
  75. Rosa CC, Podoleanu AG (2004) Limitation to the achievable signal to noise ratio in optical coherence tomography due to mismatch of the balanced receiver. Appl Opt 43:4802–4815PubMedCrossRefGoogle Scholar
  76. Saleh B (1978) Photoelectron statistics. Springer-Verlag, BerlinGoogle Scholar
  77. Schmitt JM (1999) Optical coherence tomography (OCT): A review. IEEE J Sel Top Quant Electron 5:1205–1215CrossRefGoogle Scholar
  78. Schmitt JM, Knuttel A, Yadlowsky AM, Eckhaus MA (1994) Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol 39:1705–1720PubMedCrossRefGoogle Scholar
  79. Sherif SS, Rosa CC, Flueraru C, Chang S, Mao Y, Podoleanu AG (2008) Statistics of the depth-scan photocurrent in time-domain optical coherence tomography. J Opt Soc Am 25:16–20CrossRefGoogle Scholar
  80. Shiomi M, Ito T, Yamada S, Kawashima S, Fan J (2003) Development of an Animal Model for Spontaneous Myocardial Infarction (WHHL-MI Rabbit). Arterioscler Thromb Vasc Biol 23:1239–1244PubMedCrossRefGoogle Scholar
  81. Shishkov M, Bouma BE, Jang IK, Jang DH, Aretz HT, Houser SL, Brady TJ, Schlendorf K, Tearney GJ (2000) Optical coherence tomography of porcine coronary arteries in vivo. Presented at the 2000 Optical Society of America Biomedical Topical Meeting, Miami, FloridaGoogle Scholar
  82. Shishkov M., Bouma BE, Tearney GJ (2006) System and method for optical coherence tomography. US Patent, 20060067620A1Google Scholar
  83. Smolka G (2008), Optical Coherence Tomography – Technology, Markets, and Applications 2008–2012, BioOptics World – PenWell Corp.,
  84. Standish B, Yang V, Munce N, Song L, Gardiner G, Lin A, Mao Y, Vitkin A, Marcon N, Wilson B (2007) Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus. Gastrointest Endosc 66:326–333PubMedCrossRefGoogle Scholar
  85. Strategies Unlimited, Optical Coherence Tomography (2010) Technology, Applications, and Market, January 2010 at
  86. Su J, Zhang J, Yu L, Chen Z (2007) In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography. Opt Express 15:10390–10396PubMedCrossRefGoogle Scholar
  87. Swanson EA, Huang D, Hee MR, Fujimoto JG, Lin CP, Puliafito CA (1992) High-speed optical coherence domain reflectometry. Opt Lett 17:151–153PubMedCrossRefGoogle Scholar
  88. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18:1864–1869PubMedCrossRefGoogle Scholar
  89. Swanson E, Petersen CL, McNamara E, Lamport RB, Kelly DL (2002) Ultra-small optical probes, imaging optics, and methods for using same. US Patent, 6445939Google Scholar
  90. Takahashi Y, Iwaya M, Watanabe Y, Sato M (2007) Optical probe using eccentric optics for optical coherence tomography. Opt Commun 271:285–290CrossRefGoogle Scholar
  91. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG (1997) Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am J Gastro 92:1800–1804Google Scholar
  92. Tearney GJ, Jang IK, Bouma BE (2003a) Evidence of cholesterol crystals in atherosclerotic plaque by optical coherence tomographic (OCT) imaging. Eur Heart J 24:1462–1467CrossRefGoogle Scholar
  93. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf K, Kauffmann CR, Shishkov M, Halpern EF, Bouma BE (2003b) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119PubMedCrossRefGoogle Scholar
  94. Tran PH, Mukai DS, Brenner M, Chen Z (2004) In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe. Opt Lett 29:1236–1238PubMedCrossRefGoogle Scholar
  95. Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-filed optical coherence tomography. Opt Lett 27:530–532PubMedCrossRefGoogle Scholar
  96. Van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, Van Leeuwen TG (2005) Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging 24:1369–1376PubMedCrossRefGoogle Scholar
  97. Walz M (2006) Hot Technologies for 2007: OCT: Imaging of the Future. R&D Mag 6.
  98. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS (1999) Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 38:2092–2096PubMedCrossRefGoogle Scholar
  99. Wang ZG, Lee CSD, Waltzer WC, Liu JX, Xie HK, Yuan ZJ, Pan YT (2007) In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography. J Biomed Opt 12:034009PubMedCrossRefGoogle Scholar
  100. Wang J, Hathaway M, Shidlovski V, Dainty C, Podoleanu A (2009) Evaluation of the signal noise ratio enhancement of SS-OCT versus TD-OCT using a full field interferometer. Proc SPIE 7168:71682K. doi: 10.1117/12.809043 CrossRefGoogle Scholar
  101. Westphal V, Rollins AM, Willis J, Sivak MV Jr, Izatt JA (2005) Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract. Gastrointest Endosc 61:537–546PubMedCrossRefGoogle Scholar
  102. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by fourier domain optical coherence tomography. J Biomed Opt 7:457–463PubMedCrossRefGoogle Scholar
  103. Wu L, Xie H (2009) Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J Micro/Nanolith MEMS MOEMS 8:013030. doi: 10.1117/1.3082186 CrossRefGoogle Scholar
  104. Wu J, Conry M, Gu C, Wang F, Yaqoob Z, Yang C (2006) Paired-angle-rotation scanning optical coherence tomography forward-imaging probe. Opt Lett 31:1265–1267PubMedCrossRefGoogle Scholar
  105. Xu Y, Singh J, Jason THS, Ramakrishna K, Premchandran CS, Kelvin CWS, Kuan CT, Chen M, Olivo MC, Sheppard CJR (2007) MEMS based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography Proc SPIE 6627:662715. doi: 10.1117/12.726736
  106. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffmann CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645PubMedCrossRefGoogle Scholar
  107. Yang VXD, Mao YX, Munce N, Standish B, Kucharczyk W, Marcon NE, Wilson BC, Vitkin IA (2005) Interstitial doppler optical coherence tomography. Opt Lett 30:1791–1793PubMedCrossRefGoogle Scholar
  108. Zara JM, Patterson PE (2006) Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography. Appl Phys Lett 89:263901. doi: 10.1063/1.2410239 CrossRefGoogle Scholar

Copyright information

© © Her Majesty the Queen in Right of Canada as represented by: Ian C. P. Smith 2011

Authors and Affiliations

  • Dan P. Popescu
    • 1
    Email author
  • Lin-P’ing Choo-Smith
    • 1
  • Costel Flueraru
    • 2
  • Youxin Mao
    • 2
  • Shoude Chang
    • 2
  • John Disano
    • 2
  • Sherif Sherif
    • 3
  • Michael G. Sowa
    • 1
  1. 1.National Research Council of CanadaInstitute for BiodiagnosticsWinnipegCanada
  2. 2.National Research Council of CanadaInstitute for Microstructural SciencesOttawaCanada
  3. 3.Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations