Biophysical Reviews

, Volume 2, Issue 3, pp 101–110 | Cite as

New direct dynamic models of protein interactions coupled to photosynthetic electron transport reactions

  • Galina Yu Riznichenko
  • Ilya B. Kovalenko
  • Anna M. Abaturova
  • Alexandra N. Diakonova
  • Dmitry M. Ustinin
  • Eugene A. Grachev
  • Andrew B. Rubin
Review

Abstract

This review covers the methods of computer simulation of protein interactions taking part in photosynthetic electron transport reactions. A direct multiparticle simulation method that simulates reactions describing interactions of ensembles of molecules in the heterogeneous interior of a cell is developed. In the models, protein molecules move according to the laws of Brownian dynamics, mutually orient themselves in the electrical field, and form complexes in the 3D scene. The method allows us to visualize the processes of molecule interactions and to calculate the rate constants for protein complex formation reactions in the solution and in the photosynthetic membrane. Three-dimensional multiparticle computer models for simulating the complex formation kinetics for plastocyanin with photosystem I and cytochrome bf complex, and ferredoxin with photosystem I and ferredoxin:NADP+-reductase are considered. Effects of ionic strength are featured for wild type and mutant proteins. The computer multiparticle models describe nonmonotonic dependences of complex formation rates on the ionic strength as the result of long-range electrostatic interactions.

Keywords

Protein interaction Photosynthesis Electrostatic interaction Computer model Complex formation 

References

  1. Abaturova AM, Kovalenko IB, Riznichenko GY, Rubin AB (2008) Direct multiparticle computer simulation of ionic strength dependence of the association rate constant for flavodoxin and photosystem I. Mathematics (in Russian). Comput Educ 15(3):925–933Google Scholar
  2. Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6(8):349–358. doi:10.1016/S1360-1385(01)02021-0 CrossRefPubMedGoogle Scholar
  3. Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GY, Chemeris YK, Renger G, Rubin AB (2008) PSII model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119. doi:10.1007/s11120-008-9374-2 CrossRefPubMedGoogle Scholar
  4. Crowley PB, Hunter DM, Sato K, McFarlane W, Dennison C (2004) The parsley plastocyanin-turnip cytochrome f complex: a structurally distorted but kinetically functional acidic patch. Biochem J 378:45–51. doi:10.1042/BJ20031423 CrossRefPubMedGoogle Scholar
  5. Cruz JA, Salbilla BA, Kanazawa A, Kramer DM (2001) Inhibition of plastocyanin to P700+ electron transfer in Chlamydomonas reinhardtii by hyperosmotic stress. Plant Physiol 127:1167–1179CrossRefPubMedGoogle Scholar
  6. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706(1–2):12–39. doi:10.1016/j.bbabio.2004.09.009 PubMedGoogle Scholar
  7. Fogolari F, Brigo A, Molinari H (2002) The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15(6):377–392. doi:10.1002/jmr.577 CrossRefPubMedGoogle Scholar
  8. Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31. doi:10.1016/S0005-2728(01)00195-5 CrossRefPubMedGoogle Scholar
  9. Gabdoulline RR, Wade RC (1997) Simulation of the diffusional association of barnase and barstar. Biophys J 72(5):1917–1929. doi:10.1016/S0006-3495(97)78838-6 CrossRefPubMedGoogle Scholar
  10. Gabdoulline RR, Wade RC (1998) Brownian dynamics simulation of protein-protein diffusional encounter. Methods 14(3):329–341. doi:10.1006/meth.1998.0588 CrossRefPubMedGoogle Scholar
  11. Gross EL, Pearson DC Jr (2003) Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6. Biophys J 85(3):2055–2068. doi:10.1016/S0006-3495(03)74633-5 CrossRefPubMedGoogle Scholar
  12. Gross EL, Rosenberg I (2006) A Brownian dynamics study of cytochrome f interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii plastocyanin, and cytochrome c6 mutants. Biophys J 88(3):2323–2339. doi:10.1529/biophysj.104.053561 Google Scholar
  13. Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26. doi:10.1016/S0005-2728(99)00101-2 CrossRefPubMedGoogle Scholar
  14. Janin J (2000) Kinetics and thermodynamics of protein-protein interactions. In: Kleanthous C (ed) Protein-protein recognition. Oxford University Press, Oxford, pp 1–32Google Scholar
  15. Kannt A, Young S, Bendall DS (1996) The role of acidic residues of plastocyanin in its interaction with cytochrome f. Biochim Biophys Acta 1277(1–2):115–126. doi:10.1016/S0005-2728(96)00090-4 Google Scholar
  16. Karavaev VA, Kukushkin AK (1993) Theoretical model of light and dark processes of photosynthesis: the problem of regulation. Biophysics 38:987–1003Google Scholar
  17. Kovalenko IB, Riznichenko GY (2007) Multiparticle direct simulation of photosynthetic electron transport processes. In: Deutsch A, Brusch L, Byrne H, de Vries G, Herzel H (eds) Mathematical modeling of biological systems. Birkhäuser, Boston, pp 3–11CrossRefGoogle Scholar
  18. Kovalenko IB, Ustinin DM, Grachev NE, Krendeleva TE, Kukarskih GP, Timofeev KN, Riznichenko GY, Grachev EA, Rubin AB (2003) Cyclic electron transport around photosystem I: an experimental and theoretical study. Biophysics 48(4):614–623Google Scholar
  19. Kovalenko IB, Abaturova AM, Gromov PA, Ustinin DM, Grachev EA, Riznichenko GY, Rubin AB (2006) Direct simulation of plastocyanin and cytochrome f interactions in solution. Phys Biol 3:121–129. doi:10.1088/1478-3975/3/2/004 CrossRefPubMedGoogle Scholar
  20. Kovalenko IB, Abaturova AM, Ustinin DM, Grachev EA, Riznichenko GY, Rubin AB (2007) Multiparticle computer simulation of photosynthetic electron transport in the thylakoid membrane. Biophysics 52(5):492–502. doi:10.1134/S0006350907050053 CrossRefGoogle Scholar
  21. Kovalenko IB, Abaturova AM, Gromov PA, Ustinin DM, Riznichenko GYu, Grachev EA, Rubin AB (2008a) Computer simulation of plastocyanin-cytochrome f complex formation in the thylakoid lumen. Biophysics 53(2):140–146. doi:10.1134/S0006350908020048 CrossRefGoogle Scholar
  22. Kovalenko IB, Diakonova AN, Abaturova AM, Riznichenko GY (2008b) Direct computer simulation of ferredoxin and FNR complex formation in solution. In: 16th International Symposium on Flavins and Flavoproteins, 8–13 June 2008, Prensas Universitarias de Zaragoza, Zaragoza, pp 437–442Google Scholar
  23. Kovalenko IB, Abaturova AM, Riznichenko GY, Rubin AB (2009) A novel approach to computer simulation of protein–protein complex formation. Dokl Biochem Biophys 427(1):215–217. doi:10.1134/S1607672909040127 CrossRefPubMedGoogle Scholar
  24. Kukushkin A, Poltev S, Khuznetsova S (2002) Coupling of electron and proton transport in photosynthetic membranes: molecular mechanism. Bioelectrochemistry 56(1):9–12. doi:10.1016/S1567-5394(02)00021-X CrossRefPubMedGoogle Scholar
  25. Kuznetsova SA, Kukushkin AK (1999) A new theoretical approach to studies of regulatory links in photosynthesis. Biophysics 44:448–454Google Scholar
  26. Laisk F, Nedbal L, Govindjee (2009) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. Springer, DordrechtGoogle Scholar
  27. Lazar D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220(4):469–503. doi:10.1006/jtbi.2003.3140 CrossRefPubMedGoogle Scholar
  28. Malkin R, Niyogi K (2000) Photosynthesis. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. Kluwer Academic, Dordrecht, pp 413–429Google Scholar
  29. Mathews FS, Mauk AG, Moore GR (2000) Protein-protein complexes formed by electron transfer proteins. In: Kleanthous C (ed) Protein-protein recognition. Oxford University Press, Oxford, pp 60–101Google Scholar
  30. Medina M, Hervas M, Navarro JA, De la Rosa MA, Gomez-Moreno C, Tollin G (1992) A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS 313(3):239–242. doi:10.1016/0014-5793(92)81200-6 CrossRefGoogle Scholar
  31. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565. doi:10.1146/annurev.arplant.57.032905.105350 CrossRefPubMedGoogle Scholar
  32. Pearson DC Jr, Gross EL (1998) Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys J 75(6):2698–2711. doi:10.1016/S0006-3495(98)77714-8 CrossRefPubMedGoogle Scholar
  33. Rienzo F, Gabdoulline R, Menziani M, Benedetti P, Wade R (2001) Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys J 81:3090–3104. doi:10.1016/S0006-3495(01)75947-4 CrossRefPubMedGoogle Scholar
  34. Riznichenko GY, Lebedeva GV, Demin OV, Belyaeva NE, Rubin AB (1999) Kinetic mechanisms of biological regulation in photosynthetic organisms. J Biol Phys 25(2–3):177–192. doi:10.1023/A:1005101703188 CrossRefGoogle Scholar
  35. Riznichenko GY, Beljaeva NE, Kovalenko IB, Rubin AB (2009) Mathematical and computer modeling of primary photosynthetic processes. Biophysics 54(1):10–22. doi:10.1134/S0006350909010035 Google Scholar
  36. Rubin AB, Riznichenko GY (2009) Modeling of the primary processes in a photosynthetic membrane. In: Laisk A, Nedbal L, Govindjee R (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 151–176Google Scholar
  37. Staehelin LA, van der Staay GWM (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis. The lght reactions. Kluwer Academic, Dordrecht, pp 11–30Google Scholar
  38. Stirbet A, Govindjee SBJ, Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation. J Theor Biol 193:131–151. doi:10.1006/jtbi.1998.0692 CrossRefGoogle Scholar
  39. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC (ed) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362Google Scholar
  40. Ubbink M, Ejdeback M, Karlsson BG, Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6(3):323–335. doi:10.1016/S0969-2126(98)00035-5 CrossRefPubMedGoogle Scholar
  41. Ullmann GM, Knapp E-W (1999) Electrostatic models for computing protonation and redox equilibria in proteins. Eur Biophys J 28(7):533–551. doi:10.1007/s002490050236 CrossRefPubMedGoogle Scholar
  42. Ullmann GM, Knapp E-W, Kostic NM (1997) Computational simulation and analysis of dynamic association between plastocyanin and cytochrome f. Consequences for the electron-transfer reaction. J Am Chem Soc 119(1):42–52. doi:10.1021/ja962237u CrossRefGoogle Scholar
  43. Zhu XG, Govinjee BNR, de Sturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223:114–133. doi:10.1007/s00425-005-0064-4 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2010

Authors and Affiliations

  • Galina Yu Riznichenko
    • 1
  • Ilya B. Kovalenko
    • 1
  • Anna M. Abaturova
    • 1
  • Alexandra N. Diakonova
    • 1
  • Dmitry M. Ustinin
    • 1
  • Eugene A. Grachev
    • 2
  • Andrew B. Rubin
    • 1
  1. 1.Dept. of Biophysics, Biology FacultyM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Dept. of Computer Methods in Physics, Physical FacultyM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations