Biophysical Reviews

, Volume 2, Issue 2, pp 83–90 | Cite as

Advanced magnetic resonance imaging techniques to better understand multiple sclerosis

  • Wafaa ZaaraouiEmail author
  • Bertrand Audoin
  • Jean Pelletier
  • Patrick J. Cozzone
  • Jean-Philippe Ranjeva


Magnetic resonance imaging (MRI) has considerably improved the diagnosis and monitoring of multiple sclerosis (MS). Conventional MRI such as T2-weighted and gadolinium-enhanced T1-weighted sequences detect focal lesions of the white matter, damage of the blood–brain barrier, and tissue loss and inflammatory activity within lesions. However, these conventional MRI metrics lack the specificity required for characterizing the underlying pathophysiology, especially diffuse damage occurring throughout the whole central nervous system. To overcome these limitations, advanced MRI techniques have been developed to get more sensitive and specific parameters of focal and diffuse brain damage. Among these techniques, magnetization transfer imaging, diffusion MRI, functional MRI, and magnetic resonance spectroscopy are the most significant. In this article, we provide an overview of these advanced MRI techniques and their contribution to the better characterization and understanding of MS.


Multiple sclerosis MRI Magnetization transfer imaging Diffusion MRI Functional MRI MR spectroscopy 


  1. Agosta F, Rovaris M, Pagani E, Sormani MP, Comi G, Filippi M (2006) Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis. Brain 129(Pt 10):2620–2627CrossRefPubMedGoogle Scholar
  2. Arnold DL, De Stefano N, Narayanan S, Matthews PM (2000) Proton MR spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 10(4):789–798, ix-xPubMedGoogle Scholar
  3. Audoin B, Ibarrola D, Ranjeva JP, Confort-Gouny S, Malikova I, Ali-Cherif A, Pelletier J, Cozzone P (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20(2):51–58CrossRefPubMedGoogle Scholar
  4. Audoin B, Davies G, Rashid W, Fisniku L, Thompson AJ, Miller DH (2007a) Voxel-based analysis of grey matter magnetization transfer ratio maps in early relapsing remitting multiple sclerosis. Mult Scler 13(4):483–489PubMedGoogle Scholar
  5. Audoin B, Guye M, Reuter F, Au Duong MV, Confort-Gouny S, Malikova I, Soulier E, Viout P, Cherif AA, Cozzone PJ, Pelletier J, Ranjeva JP (2007b) Structure of WM bundles constituting the working memory system in early multiple sclerosis: a quantitative DTI tractography study. Neuroimage 36(4):1324–1330CrossRefPubMedGoogle Scholar
  6. Audoin B, Ibarrola D, Malikova I, Soulier E, Confort-Gouny S, Au Duong MV, Reuter F, Viout P, Ali-Cherif A, Cozzone P, Pelletier J, Ranjeva JP (2007c) Onset and underpinnings of white matter atrophy at the very early stage of multiple sclerosis - a two-year longitudinal MRI/MRSI study of corpus callosum. Mult Scler 13:41–51CrossRefPubMedGoogle Scholar
  7. Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, Barkhof F, Inglese M, Guttmann CR, Horsfield MA, Filippi M (2008) MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 7(7):615–625CrossRefPubMedGoogle Scholar
  8. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219CrossRefPubMedGoogle Scholar
  9. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15(7–8):435–455CrossRefPubMedGoogle Scholar
  10. Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(Pt 2):527–537PubMedGoogle Scholar
  11. Ceccarelli A, Rocca MA, Falini A, Tortorella P, Pagani E, Rodegher M, Comi G, Scotti G, Filippi M (2007) Normal-appearing white and grey matter damage in MS. A volumetric and diffusion tensor MRI study at 3.0 Tesla. J Neurol 254(4):513–518CrossRefPubMedGoogle Scholar
  12. Charcot J (1868) Histologie de la sclérose en plaques. Gazette des hôpitaux 41:554–566Google Scholar
  13. Chard DT, Griffin CM, McLean MA, Kapeller P, Kapoor R, Thompson AJ, Miller DH (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain 125(Pt 10):2342–2352CrossRefPubMedGoogle Scholar
  14. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117(Pt 1):49–58CrossRefPubMedGoogle Scholar
  15. De Stefano N, Filippi M (2007) MR spectroscopy in multiple sclerosis. J Neuroimaging 17(Suppl 1):31S–35SCrossRefPubMedGoogle Scholar
  16. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38(6):901–909CrossRefPubMedGoogle Scholar
  17. Dousset V, Gayou A, Brochet B, Caille JM (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51(4):1150–1155PubMedGoogle Scholar
  18. Dwyer M, Bergsland N, Hussein S, Durfee J, Wack D, Zivadinov R (2009) A sensitive, noise-resistant method for identifying focal demyelination and remyelination in patients with multiple sclerosis via voxel-wise changes in magnetization transfer ratio. J Neurol Sci 282(1–2):86–95CrossRefPubMedGoogle Scholar
  19. Filippi M, Tortorella C, Rovaris M, Bozzali M, Possa F, Sormani MP, Iannucci G, Comi G (2000) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68(2):157–161CrossRefPubMedGoogle Scholar
  20. Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T(2)(*) mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341CrossRefPubMedGoogle Scholar
  21. Ge Y, Zohrabian VM, Osa EO, Xu J, Jaggi H, Herbert J, Haacke EM, Grossman RI (2009) Diminished visibility of cerebral venous vasculature in multiple sclerosis by susceptibility-weighted imaging at 3.0 Tesla. J Magn Reson Imaging 29(5):1190–1194CrossRefPubMedGoogle Scholar
  22. Grossman RI (1994) Magnetization tranfer in multiple sclerosis. Ann Neurol 36:S97–S99CrossRefPubMedGoogle Scholar
  23. Haacke EM, Makki M, Ge Y, Maheshwari M, Sehgal V, Hu J, Selvan M, Wu Z, Latif Z, Xuan Y, Khan O, Garbern J, Grossman RI (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 29(3):537–544PubMedCrossRefGoogle Scholar
  24. He J, Inglese M, Li BS, Babb JS, Grossman RI, Gonen O (2005) Relapsing-remitting multiple sclerosis: metabolic abnormality in nonenhancing lesions and normal-appearing white matter at MR imaging: initial experience. Radiology 234(1):211–217CrossRefPubMedGoogle Scholar
  25. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64CrossRefPubMedGoogle Scholar
  26. Hornak JP (2010) The basics of MRI. J.P. HornakGoogle Scholar
  27. Husted CA, Goodin DS, Hugg JW, Maudsley AA, Tsuruda JS, de Bie SH, Fein G, Matson GB, Weiner MW (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36(2):157–165CrossRefPubMedGoogle Scholar
  28. Iannucci G, Minicucci L, Rodegher M, Sormani MP, Comi G, Filippi M (1999) Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T(1), T(2) and MT histograms. J Neurol Sci 171(2):121–129CrossRefPubMedGoogle Scholar
  29. Khaleeli Z, Sastre-Garriga J, Ciccarelli O, Miller DH, Thompson AJ (2007) Magnetisation transfer ratio in the normal appearing white matter predicts progression of disability over 1 year in early primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 78(10):1076–1082CrossRefPubMedGoogle Scholar
  30. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712CrossRefPubMedGoogle Scholar
  31. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–5679CrossRefPubMedGoogle Scholar
  32. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17(2):210–218CrossRefPubMedGoogle Scholar
  33. Miller DH (2004) Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRx 1(2):284–294CrossRefPubMedGoogle Scholar
  34. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies - a technical review. NMR Biomed 15(7–8):468–480CrossRefPubMedGoogle Scholar
  35. Neema M, Stankiewicz J, Arora A, Guss ZD, Bakshi R (2007) MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 4(4):602–617CrossRefPubMedGoogle Scholar
  36. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872CrossRefPubMedGoogle Scholar
  37. Pantano P, Mainero C, Lenzi D, Caramia F, Iannetti GD, Piattella MC, Pestalozza I, Di Legge S, Bozzao L, Pozzilli C (2005) A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain 128(Pt 9):2146–2153CrossRefPubMedGoogle Scholar
  38. Parry AM, Scott RB, Palace J, Smith S, Matthews PM (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126(Pt 12):2750–2760CrossRefPubMedGoogle Scholar
  39. Ranjeva JP, Audoin B, Au Duong MV, Ibarrola D, Confort-Gouny S, Malikova I, Soulier E, Viout P, Ali-Cherif A, Pelletier J, Cozzone P (2005) Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis. Am J Neuroradiol 26(1):119–127PubMedGoogle Scholar
  40. Reuter F, Del Cul A, Malikova I, Naccache L, Confort-Gouny S, Cohen L, Cherif AA, Cozzone PJ, Pelletier J, Ranjeva JP, Dehaene S, Audoin B (2009) White matter damage impairs access to consciousness in multiple sclerosis. Neuroimage 44(2):590–599CrossRefPubMedGoogle Scholar
  41. Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):36S–41SCrossRefPubMedGoogle Scholar
  42. Rocca MA, Pagani E, Absinta M, Valsasina P, Falini A, Scotti G, Comi G, Filippi M (2007) Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology 69(23):2136–2145CrossRefPubMedGoogle Scholar
  43. Rocca MA, Valsasina P, Ceccarelli A, Absinta M, Ghezzi A, Riccitelli G, Pagani E, Falini A, Comi G, Scotti G, Filippi M (2009) Structural and functional MRI correlates of Stroop control in benign MS. Hum Brain Mapp 30(1):276–290CrossRefPubMedGoogle Scholar
  44. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265(2):54–84CrossRefPubMedGoogle Scholar
  45. Rovaris M, Gallo A, Valsasina P, Benedetti B, Caputo D, Ghezzi A, Montanari E, Sormani MP, Bertolotto A, Mancardi G, Bergamaschi R, Martinelli V, Comi G, Filippi M (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24(4):1139–1146CrossRefPubMedGoogle Scholar
  46. Rovira A, Leon A (2008) MR in the diagnosis and monitoring of multiple sclerosis: an overview. Eur J Radiol 67(3):409–414CrossRefPubMedGoogle Scholar
  47. Rovira A, Alonso J, Cucurella G, Nos C, Tintore M, Pedraza S, Rio J, Montalban X (1999) Evolution of multiple sclerosis lesions on serial contrast-enhanced T1-weighted and magnetization-transfer MR images. Am J Neuroradiol 20(10):1939–1945PubMedGoogle Scholar
  48. Sajja BR, Wolinsky JS, Narayana PA (2009) Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin North Am 19(1):45–58CrossRefGoogle Scholar
  49. Schmierer K, Wheeler-Kingshott CA, Boulby PA, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35(2):467–477CrossRefPubMedGoogle Scholar
  50. Sharma R, Narayana PA, Wolinsky JS (2001) Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 7(4):221–226PubMedGoogle Scholar
  51. Sharma J, Zivadinov R, Jaisani Z, Fabiano AJ, Singh B, Horsfield MA, Bakshi R (2006) A magnetization transfer MRI study of deep gray matter involvement in multiple sclerosis. J Neuroimaging 16(4):302–310CrossRefPubMedGoogle Scholar
  52. Sijens PE, Mostert JP, Oudkerk M, De Keyser J (2006) (1)H MR spectroscopy of the brain in multiple sclerosis subtypes with analysis of the metabolite concentrations in gray and white matter: initial findings. Eur Radiol 16(2):489–495CrossRefPubMedGoogle Scholar
  53. Silver NC, Lai M, Symms MR, Barker GJ, McDonald WI, Miller DH (1998) Serial magnetization transfer imaging to characterize the early evolution of new MS lesions. Neurology 51(3):758–764PubMedGoogle Scholar
  54. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26(1):132–140CrossRefPubMedGoogle Scholar
  55. Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128(Pt 5):1016–1025CrossRefPubMedGoogle Scholar
  56. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  57. Tallantyre EC, Morgan PS, Dixon JE, Al-Radaideh A, Brookes MJ, Evangelou N, Morris PG (2009) A comparison of 3 T and 7 T in the detection of small parenchymal veins within MS lesions. Invest Radiol 44(9):491–494CrossRefPubMedGoogle Scholar
  58. Tofts P (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, ChichesterGoogle Scholar
  59. Van Au Duong M, Audoin B, Le Fur Y, Confort-Gouny S, Malikova I, Soulier E, Viout P, Ali-Cherif A, Pelletier J, Cozzone PJ, Ranjeva JP (2007) Relationships between gray matter metabolic abnormalities and white matter inflammation in patients at the very early stage of MS: a MRSI study. J Neurol 254(7):914–923CrossRefGoogle Scholar
  60. Wattjes MP, Lutterbey GG, Gieseke J, Traber F, Klotz L, Schmidt S, Schild HH (2007) Double inversion recovery brain imaging at 3 T: diagnostic value in the detection of multiple sclerosis lesions. Am J Neuroradiol 28(1):54–59PubMedGoogle Scholar
  61. Werring DJ, Brassat D, Droogan AG, Clark CA, Symms MR, Barker GJ, MacManus DG, Thompson AJ, Miller DH (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123(Pt 8):1667–1676CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2010

Authors and Affiliations

  • Wafaa Zaaraoui
    • 1
    Email author
  • Bertrand Audoin
    • 1
    • 2
  • Jean Pelletier
    • 1
    • 2
  • Patrick J. Cozzone
    • 1
  • Jean-Philippe Ranjeva
    • 1
  1. 1.Centre de Résonance Magnétique Biologique et Médicale – UMR CNRS 6612 – Faculté de MédecineUniversité de la MéditerranéeMarseilleFrance
  2. 2.Pôle de Neurosciences Cliniques, Service de NeurologieHôpital de La TimoneMarseilleFrance

Personalised recommendations