Biophysical Reviews

, Volume 2, Issue 2, pp 55–65 | Cite as

Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants

  • Marcela M. BilekEmail author
  • David R. McKenzie


Plasma modification and plasma polymer deposition are valuable technologies for the preparation of surfaces for the covalent binding of biomolecules for applications such as biosensors, medical prostheses, and diagnostic devices as well as surfaces for enzyme-mediated reactions. Covalency is conveniently tested by the ability of the surface to retain the attached molecules after vigorous washing with sodium dodecyl sulphate (SDS). Covalency is indicated if the fraction of protein retained lies above the curve characteristic of physisorption. Confidence in covalency is strengthened when the washing protocol is aggressive enough to remove all adsorbed protein from a control significantly more hydrophobic than the test surface. The use of linker chemistry to space the molecules from the surface is in some cases beneficial. However, the use of linker chemistry is not necessary to retain molecular function for long periods when the polymer surface is modified by energetic bombardment. The energetic bombardment retains hydrophilicity of the surface by crosslinking the subsurface, and this appears to facilitate retention of protein function. Energetic bombardment also increases the functional life of molecules immobilized and then freeze dried on plasma-modified surfaces. Analysis of the surfaces shows that the covalent binding mechanism is related to the presence of free radicals on the surface and in the subsurface regions. The unpaired electrons associated with the radicals appear to be mobile within the modified region and can diffuse to the surface to take part in binding interactions. Proactive implantable devices can make use of these principles of covalent attachment by seeding the surface of an implant with a biomolecule that elicits the desired interaction with cells and prevents undesirable responses.


Plasma modification Plasma polymer Covalent immobilisation Energetic bombardment 



The authors wish to acknowledge the Australian Research Council for financial support. We acknowledge also Professor Hans Griesser for helpful discussions on SDS washing as a test for covalent attachment of proteins to surfaces.

Supplementary material

12551_2010_28_MOESM1_ESM.doc (64 kb)
ESM 1 Methods for Characterising Plasma Treated surfaces and their ability to strongly attach bioactive protein layers (DOC 64 kb)


  1. Alvarez-Blanco S, Manloache S, Denes F (2001) A novel plasma-enhanced way for surface-functionalization of polymeric substrates. Polym Bull 47:329–336. doi: 10.1007/s289-001-8189-4 CrossRefGoogle Scholar
  2. Azarkan M, Huet J, Baeyens-Volant D et al (2007) Affinity chromatography: a useful tool in proteomics studies. J Chromatogr B Analyt Technol Biomed Life Sci 849:81–90. doi: 10.1016/j.jchromb.2006.10.056 CrossRefPubMedGoogle Scholar
  3. Bax DV, McKenzie DR, Weiss AS, Bilek MM (2009) Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomater 5:3371–3381Google Scholar
  4. Bax DV, McKenzie DR, Weiss AS, Bilek MMM (2010) The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylenes and subsequent cell-binding activity. Biomaterials 31:2526–2534Google Scholar
  5. Biederman H (2004) Plasma polymer films. Imperial College Press, LondonGoogle Scholar
  6. Biederman H, Osada Y (1992) Plasma polymerisation processes. Elsevier, AmsterdamGoogle Scholar
  7. Bilek M, McKenzie DR, Nosworthy NJ, Kondyurin A (2006) Activated polymers binding biological molecules. PCT/AU2007/000321 (WO2007/104107), priority 15Google Scholar
  8. Bilek M, McKenzie DR, Powles RC (2007) Treatment of polymeric biomaterials by ion implantation. In: Chu PK, Liu X (eds) Biomaterials and surface modification. Research Signpost, KeralaGoogle Scholar
  9. Bohnert JL, Fowler BC, Horbett TA, Hoffman AS (1990) Plasma gas discharge deposited fluorocarbon polymers exhibit reduced elutability of adsorbed albumin and fibrinogen. J Biomater Sci Polym Ed 1:279–297. doi: 10.1163/156856289X00154 CrossRefPubMedGoogle Scholar
  10. Chen JP, Kiaei D, Hoffman AS (1993) Activity of horseradish peroxide adsorbed on radio frequency glow discharge-treated polymers. J Biomater Sci Polym Ed 5:167–182. doi: 10.1163/156856294X00734 CrossRefPubMedGoogle Scholar
  11. d’Agostino R (1990) Plasma deposition, treatment and etching of polymers. Academic, New YorkGoogle Scholar
  12. Danilich MJ, Kandice Kottke-Marchant K, Anderson JM, Marchant RE (1992) The immobilization of glucose oxidase onto radio-frequency plasma-modified poly(etherurethaneurea). J Biomater Polymer Sci 3:1952–216. doi: 10.1163/156856292X00123 Google Scholar
  13. Frisk ML, Tepp WH, Johnson EA, Beebe DJ (2009) Self-assembled peptide monolayers as a toxin sensing mechanism within arrayed microchannels. Anal Chem 81(7):2760–2767CrossRefPubMedGoogle Scholar
  14. Fu RKY, Tian X, Chu PK (2003) Enhancement of implantation energy using a conducting grid in plasma immersion ion implantation of dielectric/polymeric materials. Rev Sci Instrum 74:3697–3700CrossRefGoogle Scholar
  15. Gan BK, Bilek MMM, Kondyurin A, Mizuno K, McKenzie DR (2006) Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 247:254–260CrossRefGoogle Scholar
  16. Gan BK, Kondyurin A, Bilek MM (2007) Comparison of protein surface attachment on untreated and plasma immersion ion implantation treated polystyrene: protein islands and carpet. Langmuir 23:2741–2746. doi: 10.1021/la062722v CrossRefPubMedGoogle Scholar
  17. Gan BK, Nosworthy NJ, McKenzie DR, dos Remedios CG, Bilek MMM (2008) Plasma immersion ion implantation treatment of polyethylene for enhanced binding of active horseradish peroxidase. J Biomed Mater Res A 85:605–610. doi: 10.1002/jbm.a.31612 PubMedGoogle Scholar
  18. Ganapathy R, Sarmadi M, Denes F (1998) Immobilization of alpha-chymotrypsin on oxygen-RF-plasma functionalized PET and PP surfaces. J Biomater Sci Polym Ed 9:389–404PubMedGoogle Scholar
  19. Ganapathy R, Manolache S, Sarmadi M, Simonsick WJ Jr, Denes F (2000) Immobilization of active a-chymotrypsin on RF-plama functionalized polymer surfaces. J App Polymer Sci 78:1783–1796CrossRefGoogle Scholar
  20. Ganapathy R, Manolache S, Sarmadi M, Denes F (2001) Immobilization of papain on cold-plasma functionalized polyethylene and glass surfaces. J Biomater Sci Polym Ed 12:1027–1049CrossRefPubMedGoogle Scholar
  21. George DF, Bilek MMM, McKenzie DR (2008) Detecting and exploring partially unfolded states of proteins using a sensor with chaperone bound to its surface. Biosens Bioelectron 24:969–975. doi: 10.1016/j.bios.2008.07.076 CrossRefPubMedGoogle Scholar
  22. Hartmann M, Roeradde J, Stoll D, Templin MS, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416. doi: 10.1007/s00216-008-2379-z CrossRefPubMedGoogle Scholar
  23. Ho JPY, Nosworthy NJ, Bilek MMM, Gan BK, McKenzie DR, Chu PK, dos Remedios CG (2007) Plasma-treated polyethylene surfaces for improved binding of active protein. Plasma Process Polymers 4:583–590. doi: 10.1002/ppap.20060018 CrossRefGoogle Scholar
  24. Inagaki K (1996) Surface modification and plasma polymerisation. Technomic, Lancaster, PA, USAGoogle Scholar
  25. Itoyama K, Tokura S, Hayashi T (2008) Lipoprotein lipase immobilization onto porous chitosan beads. Biotechnol Prog 10:225–229CrossRefGoogle Scholar
  26. Karkhaneh A, Mirzadeh H, Ghaffariyeh AR (2007) Simultaneous graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two-step plasma treatment. J App Polymer Sci 105:2208–2217CrossRefGoogle Scholar
  27. Kereszturi K, Tóth A, Mohai M, Bertóti I (2008) Surface chemical and nanomechanical alterations in plasma immersion ion implanted PET. Surf Interface Anal 40:664–667. doi: 10.1002/sia.2643 CrossRefGoogle Scholar
  28. Kiaei D, Hoffman AS, Horbett TA (1992) Tight binding of albumin to glow discharge treated polymers. J Biomater Sci Polym Ed 4:35–44. doi: 10.1163/156856292X00286 PubMedGoogle Scholar
  29. Kondyurin A, Bilek M (2008) Ion beam treatment of polymers: application aspects from medicine to space. Elsevier, OxfordGoogle Scholar
  30. Kondyurin A, Maitz MF (2005) Surface modification of ePTFE and implants using the same. WO2007/022174 A2, priority 18Google Scholar
  31. Kondyurin A, Gan BK, Bilek MMM, Mizuno K, McKenzie DR (2006) Etching and structural changes of polystyrene films during plasma immersion ion implantation from argon plasm. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 251:413–418CrossRefGoogle Scholar
  32. Kondyurin A, Gan BK, Bilek MMM, McKenzie DR, Wuhrer K (2008a) Argon plasma immersion ion implantation of polystyrene films. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 266:1074–1084CrossRefGoogle Scholar
  33. Kondyurin A, Polonskyi O, Nosworthy N, Matousek J, Hlidek P, Biederman H, Bilek MMM (2008b) Covalent attachment and bioactivity of horseradish peroxidase on plasma-polymerized hexane coatings. Plasma Process Polymers 5:727–736. doi: 10.1016/j.actbio.2008.04.017 CrossRefGoogle Scholar
  34. Kondyurin A, Nosworthy NJ, Bilek MMM (2008c) Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomater 4:1218–1225CrossRefPubMedGoogle Scholar
  35. Kondyurin A, Nosworthy NJ, Bilek MMM, Jones R, Pigram PJ (2009a) Surface attachment of horseradish peroxidase to plasma immersion ion implantation modified nylon. (private communication)Google Scholar
  36. Kondyurin A, Naseri P, Fisher K, McKenzie DR, Bilek MMM (2009b) Mechanisms for surface energy changes observed in plasma immersion ion implanted polyethylene: the roles of free radicals and oxygen-containing groups. Polym Degrad Stab 94:638–646. doi: 10.1016/j.polymdegradstab.2009.01.004 CrossRefGoogle Scholar
  37. MacDonald C, Morrow R, Weiss AS, Bilek MM (2008) Covalent attachment of functional protein to polymer surfaces: a novel one-step dry process. J Roy Soc Interface 5:663–669CrossRefGoogle Scholar
  38. Martinez AJ, Manolache S, Gonzalez V, Young RA, Denes F (2000) Immobilized biomolecules on plasma functionalized cellophane. I. Covalently attached alpha-chymotrypsin. J Biomater Sci, Polym Ed 11:415–438CrossRefGoogle Scholar
  39. Mesyats G, Klyachkin Y, Gavrilov N, Kondyurin A (1999) Adhesion of polytetrafluorethylene modified by an ion beam. Vacuum 52:285–289CrossRefGoogle Scholar
  40. Mitchell SA, Davidson MR, Bradley RH (2005) Improved cellular adhesion to acetone plasma modified polystyrene surfaces. J Colloid Interface Sci 281:122–129CrossRefPubMedGoogle Scholar
  41. Nosworthy NJ, Ho JP, Kondyurin A, McKenzie DR, Bilek MMM (2007) The attachment of catalase and poly-l-lysine to plasma immersion ion implantation treated polyethylene. Acta Biomater 3:695–704. doi: 10.1016/j.actbio.2007.02.005 CrossRefPubMedGoogle Scholar
  42. Nosworthy NJ, McKenzie DR, Bilek MM (2009) A new surface for immobilizing and maintaining the function of enzymes in a freeze-dried state. Biomacromolecules 10:2577–2583CrossRefPubMedGoogle Scholar
  43. Oates TWH, Pigott J, McKenzie DR, Bilek M (2003) Electric probe measurements of high voltage sheath collapse in cathodic arc plasmas due to surface charging of insulators. IEEE Trans Plasma Sci 3:438–443. doi: 10.1109/TPS.2003.813199 CrossRefGoogle Scholar
  44. Park JW, Lee DH, Kim YJ, Jang JH, Suh JY, Kim IS (2009) Osteoconductivity of titanium implants coated with a new fusion protein containing four cell adhesion motifs. Tissue Eng Regenerative Med 6:888–892Google Scholar
  45. Safranj A, Kiaei D, Hoffman AS (1991) Antibody immobilization onto glow discharge treated polymers. Biotechnol Prog 7:173–177. doi: 10.1021/bp00008a012 CrossRefPubMedGoogle Scholar
  46. Sartori S, Rechichi A, Vozzi G, D'Acunto M, Heine E, Giusti P, Ciardelli G (2008) Surface modification of a synthetic polyurethane by plasma glow discharge: preparation and characterization of bioactive monolayers. React Funct Polymers 68:809–821CrossRefGoogle Scholar
  47. Sugita Y, Suzuki Y, Someya K, Ogawa A, Furuhata H, Miyoshi S, Motomura T, Miyamoto H, Igo S, Nosé Y (2009) Experimental evaluation of a new antithrombogenic stent using ion beam surface modification. Artif Organs 33:456–463. doi: 10.1111/j.1525-1594.2009.00747.x CrossRefPubMedGoogle Scholar
  48. Tóth A, Mohai M, Ujvári T, Bertóti I (2006) Hydrogen plasma immersion ion implantation of ultra-high molecular weight polyethylene. Surf Interface Anal 38:898–902. doi: 10.1002/sia.2197 CrossRefGoogle Scholar
  49. Trevan MD, Boffey SA, Goulding KG, Stanbury PF (1987) Enzyme applications in biotechnology: the biological principles. Open University Press, Milton Keynes, UKGoogle Scholar
  50. Vallet-Regí M, Balas F, Cololla M, Manzano M (2008) Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 36:163–191. doi: 10.1016/j.progsolidstchem.2007.10.002 CrossRefGoogle Scholar
  51. Wasserman B, Dresselhaus MS, Braunstein G, Wnek GE, Roth G (1985) Electron spin resonance study of ion-implanted polymers. J Electron Mater 14:157-170. doi: 10.1007/BF02656673 Google Scholar
  52. Woodward J (1985a) Immobilised cells and enzymes: a practical approach. Oxford University Press, USAGoogle Scholar
  53. Woodward J (1985b) Immobilsed enzymes: adsorption and covalent coupling. In: Woodward J (ed) Immobilised cells and enzymes: a practical approach. Oxford University Press, USAGoogle Scholar
  54. Yin Y, McKenzie DR, Bilek MM (2009a) Ellipsometric detection of post-drying conformational changes of surface immobilized protein monolayers at solid/air interfaces. (private communication)Google Scholar
  55. Yin Y, Nosworthy HJ, Youssef H, Gong B, Bilek MMM, McKenzie DR (2009b) Acetylene plasma coated surfaces for covalent immobilization of proteins. Thin Solid Films 517:5343–5346. doi: 10.1016/j.tsf.2009.03.045 CrossRefGoogle Scholar
  56. Yin Y, Fisher K, Nosworthy NJ, Bax DV, Rubanov S, Gong W, Weiss AS, McKenzie DR, Bilek MMM (2009c) Covalently bound biomimetic layers on plasma polymers with graded metallic interfaces for in vivo implants. Plasma Process Polymers 6:658–666.Google Scholar
  57. Yin Y, Bilek MMM, McKenzie DR, Nosworthy NJ, Kondyurin A, Youssef H, Byrom MJ, Yang W (2009d) Acetylene plasma polymerised surfaces for covalent immobiization of dense bioactive protein monolayers. Surf Coatings Technol 203:1310–1316. doi: 10.1016/j.surfcoat.2008.10.035 CrossRefGoogle Scholar
  58. Yin Y, Nosworthy NJ, Gong B, Bax D, Kondyurin A, McKenzie DR, Bilek MMM (2009e) Plasma polymer surfaces compatible with a CMOS process for direct covalent enzyme immobilization. Plasma Process Polymers 6:68–75. doi: 10.1002/ppap.200990000 CrossRefGoogle Scholar
  59. Yin Y, Wise SG, Nosworthy NJ, Waterhouse A, Bax DV, Youssef H, Byrom MJ, Bilek MMM, McKenzie DR, Weiss AS, Ng MKC (2009f) Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials 30:1675–1681CrossRefPubMedGoogle Scholar
  60. Ziegler JF, Biersack JP (1985) The stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2010

Authors and Affiliations

  1. 1.School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations