Biophysical Reviews

, Volume 1, Issue 2, pp 95–103 | Cite as

Vibrational spectroscopic mapping and imaging of tissues and cells

  • Elizabeth A. Carter
  • Koman K. Tam
  • Robert S. Armstrong
  • Peter A. Lay
Review

Abstract

Vibrational spectroscopic mapping (point-by-point measurement) and imaging of biological samples (cells and tissues) covering Fourier-transform infrared (FTIR) and Raman spectroscopies has opened up many exciting new avenues to explore biochemical architecture and processes within healthy and diseased cells and tissues, including medical diagnostics and drug design.

Keywords

Biological tissues Cells Imaging Mapping Vibrational spectroscopy 

Notes

Acknowledgments

The breast cancer research was supported by a grant from The University of Sydney, Cancer Research Fund, the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program for research conducted at NSSRC, and the Australian Synchrotron. The authors also thank Dr. Brian Reedy for the use of the FTIR imaging instrument at the University of Technology, Sydney. We are grateful to the ARC for funding of some of the research reported herein through RIEF and LIEF grants and ARC Discovery grants to PAL, including Australian Professorial Fellowships. We also thank Carolyn Mountford from the Institute for Magnetic Resonance Research, The University of Sydney, and Peter Russell from the Department of Anatomical Pathology, Royal Prince Alfred Hospital, for provision of the breast cancer samples used to obtain the spectra in Figs. 1, 2 and 4.

References

  1. Aitken JB, Carter EA, Eastgate H, et al (2009) Biomedical applications of X-Ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems. Radiat Phys Chem (in press). doi:10.1016/jradphyschem.2009.03.068
  2. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930. doi:10.1039/b705967c PubMedCrossRefGoogle Scholar
  3. Becker M, Sivakov V, Goesele U et al (2008) Nanowires enabling signal-enhanced nanoscale Raman spectroscopy. Small 4:398–404. doi:10.1002/smll.200701007 PubMedCrossRefGoogle Scholar
  4. Bernad S, Leygue N, Korri-Youssoufi H et al (2007) Kinetics of the electron transfer reaction of Cytochrome c552 adsorbed on biomimetic electrode studied by time-resolved surface-enhanced resonance Raman spectroscopy and electrochemistry. Eur Biophys J 36:1039–1048. doi:10.1007/s00249-007-0173-z Google Scholar
  5. Bhargava R (2007) Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389:1155–1169. doi:10.1007/s00216-007-1511-9 PubMedCrossRefGoogle Scholar
  6. Biju V, Pan D, Gorby YA et al (2007) Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces. Langmuir 23:1333–1338. doi:10.1021/la061343z PubMedCrossRefGoogle Scholar
  7. Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10(9):031102PubMedCrossRefGoogle Scholar
  8. Botvinick EL, Shah JV (2007) Laser-based measurements in cell biology. In: Botvinick EL, Shah JV (eds) Laser manipulation of cells and tissues, Elsevier, Amsterdam, pp 81–109Google Scholar
  9. Burstein H, Polyak K, Wong J et al (2004) Medical progress: ductal carcinoma in-situ of the breast. N Engl J Med 350:1430–1441. doi:10.1056/NEJMra031301 PubMedCrossRefGoogle Scholar
  10. Carr GL, Hanfland M, Williams GP (1995) Midinfrared beamline at the national synchrotron light source port U2B. Rev Sci Instrum 66:1643–1645. doi:10.1063/1.1145870 CrossRefGoogle Scholar
  11. Carter EA, Edward HGM (2001) Biological applications of Raman spectroscopy. In: Gremlich H-U, Yan B (eds) Infrared and Raman spectroscopy of biological materials. Marcel Dekker, New York, pp 421–475Google Scholar
  12. Chan J, Fore S, Wachsman-Hogiu S et al (2008) Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photon Rev 2:325–349. doi:10.1002/lpor.200810012 CrossRefGoogle Scholar
  13. Ci Y, Gao T, Feng J et al (1999) Fourier transform infrared spectroscopic characterization of human breast tissue: implications for breast cancer diagnosis. Appl Spectrosc 53:312–315. doi:10.1366/0003702991946703 CrossRefGoogle Scholar
  14. Davies RJ, Burghammer M, Riekel C (2009) A combined microRaman and microdiffraction set-up at the European Synchrotron Radiation Facility ID13 beamline. J Synchrotron Radiat 16:22–29. doi:10.1107/s0909049508034663 PubMedCrossRefGoogle Scholar
  15. Djaker N, Gachet D, Sandeau N, Lenne P-F, Rigneault H (2007) Refractive effects in coherent anti-Stokes Raman scattering microscopy. Appl Optics 45:7005–7011Google Scholar
  16. Dukor R (2002) Vibrational spectroscopy in the detection of cancer. In: Chalmers J, Griffiths P (eds) Handbook of vibrational spectroscopy, 1st edn. John Wiley & Sons, Chichester, pp 3335–3361Google Scholar
  17. Eichert D, Gregoratti L, Kaulich B et al (2007) Imaging with spectroscopic micro-analysis using synchrotron radiation. Anal Bioanal Chem 389:1121–1132. doi:10.1007/s00216-007-1532-4 PubMedCrossRefGoogle Scholar
  18. Eronen P, Osterberg M, Jaaskelainen AS (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178. doi:10.1007/s10570-008-9259-8 CrossRefGoogle Scholar
  19. Gachet D, Billard F, Rigneault H (2008) Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy. Phys Rev A 77:061801–061804. doi:10.1103/PhysRevA.77.061802 CrossRefGoogle Scholar
  20. Gallet J, Riley M, Hao Z, Martin MC (2008) Increasing FTIR spectromicroscopy speed and resolution through compressive imaging. IR Physics Technol 51:420–422Google Scholar
  21. Geladi P (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim Acta B 58:767–782. doi:10.1016/S0584-8547(03)00037-5 CrossRefGoogle Scholar
  22. Geladi P, Sethson B, Nystrom J et al (2004) Chemometrics in spectroscopy. Part 2. Examples. Spectrochim Acta B 59:1347–1357. doi:10.1016/j.sab.2004.06.009 Google Scholar
  23. Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectr-Int J 21:69–89Google Scholar
  24. Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, New YorkCrossRefGoogle Scholar
  25. Grude O, Hammiche A, Pollock H et al (2007) Near-field photothermal microspectroscopy for adult stem-cell identification and characterization. J Microsc-Oxf 228:366–372. doi:10.1111/j.1365-2818.2007.01853.x CrossRefGoogle Scholar
  26. Grude O, Nakamura T, Hammiche A et al (2009) Discrimination of human stem cells by photothermal microspectroscopy. Vib Spectrosc 49:22–27. doi:10.1016/j.vibspec.2008.04.008 CrossRefGoogle Scholar
  27. Hammiche A, Pollock HM, Reading M et al (1999) Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl Spectrosc 53:810–815. doi:10.1366/0003702991947379 CrossRefGoogle Scholar
  28. Hammiche A, German MJ, Hewitt R et al (2005) Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy. Biophys J 88:3699–3706. doi:10.1529/biophysj.104.053926 PubMedCrossRefGoogle Scholar
  29. Hammiche A, Walsh MJ, Pollock HM et al (2007) Non-contact micro-cantilevers detect photothermally induced vibrations that can segregate different categories of exfoliative cervical cytology. J Biochem Biophys Methods 70:675–677. doi:10.1016/j.jbbm.2007.01.011 PubMedCrossRefGoogle Scholar
  30. Jackson M, Mantsch HH (2002) Pathology by infrared and Raman spectroscopy. In: Chalmers J, Griffiths P (eds) Handbook of vibrational spectroscopy. John Wiley & Sons, Chichester, pp 3227–3245Google Scholar
  31. Kazarian SG (2007) Enhancing high-throughput technology and microfluidics with FTIR spectroscopic imaging. Anal Bioanal Chem 388:529–532. doi:10.1007/s00216-007-1193-3 PubMedCrossRefGoogle Scholar
  32. Keren S, Zavaleta C, Cheng Z et al (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 105:5844–5849. doi:10.1073/pnas.0710575105 PubMedCrossRefGoogle Scholar
  33. Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta Biomembranes 1758:814–1729Google Scholar
  34. Leonard G, Swain S (2004) Ductal carcinoma in-situ, complexities and challenges. J Natl Cancer Inst 96:906–920Google Scholar
  35. Levin IW, Bhargava R (2005) Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition. Annu Rev Phys Chem 56:429–474. doi:10.1146/annurev.physchem.56.092503.141205 PubMedCrossRefGoogle Scholar
  36. Martin MC, Tsvetkova NM, Crowe JH et al (2001) Negligible sample heating from synchrotron infrared beam. Appl Spectrosc 55:111–113. doi:10.1366/0003702011951551 CrossRefGoogle Scholar
  37. McKee G (2002) Cytopathology of the breast. Oxford University Press, BostonGoogle Scholar
  38. Miller LM, Dumas P (2006) Chemical imaging of biological tissues with synchrotron infrared light. Biochim Biophys Acta 1758:846–857. doi:10.1016/j.bbamem.2006.04.010 PubMedCrossRefGoogle Scholar
  39. Miller LM, Wang Q, Smith RJ et al (2007) A new sample substrate for imaging and correlating organic and trace metal composition in biological cells and tissues. Anal Bioanal Chem 387:1705–1715. doi:10.1007/s00216-006-0879-2 PubMedCrossRefGoogle Scholar
  40. Moreira LM, Silveira L, Santos FV et al (2008) Raman spectroscopy: A powerful technique for biochemical analysis and diagnosis. Spectroscopy 22:1–19. doi:10.3233/spe-2008-0326 Google Scholar
  41. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541. doi:10.1080/05704920701551530 CrossRefGoogle Scholar
  42. Nasse MJ, Reininger R, Kubala T et al (2007) Synchrotron infrared microspectroscopy imaging using a multi-element detector (IRMSI-MED) for diffraction-limited chemical imaging. Nucl Instr Methods A 582:107–110. doi:10.1016/j.nima.2007.08.073 CrossRefGoogle Scholar
  43. Neugebauer U, Schmid U, Baumann K et al (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem 8:124–137. doi:10.1002/cphc.200600507 PubMedCrossRefGoogle Scholar
  44. Parker SF (1994) A review of the theory of Fourier-transform Raman-spectroscopy. Spectrochim Acta [A] 50:1841–1856. doi:10.1016/0584-8539(94)80197-5 Google Scholar
  45. Petibois C, Guidi MC (2008) Bioimaging of cells and tissues using accelerator-based sources. Anal Bioanal Chem 391:1599–1608. doi:10.1007/s00216-008-2157-y PubMedCrossRefGoogle Scholar
  46. Petter CH, Heigl N, Rainer M et al (2009) Development and application of Fourier-transform infrared chemical imaging of tumour in human tissue. Curr Med Chem 16:318–326PubMedCrossRefGoogle Scholar
  47. Pollock H, Smith DA (2002) The use of near-field probes for vibrational spectroscopy and photothermal imaging. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. John Wiley & Sons, Chichester, pp 1472–1492Google Scholar
  48. Ricci C, Bloxham S, Kazarian SG (2007) ATR-FTIR imaging of albumen photographic prints. J Cult Herit 8:387–395. doi:10.1016/j.culher.2007.07.002 CrossRefGoogle Scholar
  49. Schipper ML, Nakayama-Ratchford N, Davis CR et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3:216–221. doi:10.1038/nnano.2008.68 PubMedCrossRefGoogle Scholar
  50. Serge A, Bertaux N, Rigneault H, Marguet D (2007) Improved single molecule detection and tracing algorithms for the generation of a dynamic map of membrane diffusion in living cells. Biophys J Suppl S: 91A Supplement: Suppl. SGoogle Scholar
  51. Skinner KA (2003) The clinical management of ductal carcinoma in-situ, lobular carcinoma in-situ and atypical hyperplasia of the breast. National Breast Cancer Centre, SydneyGoogle Scholar
  52. Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964. doi:10.1039/b708841h PubMedCrossRefGoogle Scholar
  53. Srinivasan G, Bhargava R (2007) Fourier transform-infrared spectroscopic imaging: The emerging evolution from a microscopy tool to a cancer imaging modality. Spectroscopy 22:30–43Google Scholar
  54. Stokes RJ, McKenzie F, McFarlane E et al (2009) Rapid cell mapping using nanoparticles and SERRS. Analyst (Lond) 134:170–175. doi:10.1039/b815117b CrossRefGoogle Scholar
  55. Swain RJ, Stevens MM (2007) Raman microspectroscopy for non-invasive biochemical analysis of single cells. Biochem Soc Trans 35:544–549. doi:10.1042/BST0350544 PubMedCrossRefGoogle Scholar
  56. Tam KK (2006) A non-destructive approach for breast cancer diagnosis and pathological strategy using infrared and Raman spectroscopy. PhD thesis. The University of Sydney, SydneyGoogle Scholar
  57. Williams K, Bennett R, Brooker A et al (2003) New methods in Raman spectroscopy—combining other microscopes. Microsc Microanal 9:1094–1095Google Scholar
  58. Wood BR, Hammer L, Davis L, et al (2005) Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. J Biomed Opt 10:014005. doi:10.1117/1.1854678 Google Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2009

Authors and Affiliations

  • Elizabeth A. Carter
    • 1
  • Koman K. Tam
    • 1
    • 2
  • Robert S. Armstrong
    • 1
  • Peter A. Lay
    • 1
  1. 1.Vibrational Spectroscopy Facility, School of ChemistryThe University of SydneySydneyAustralia
  2. 2.Analytical Technologies Division–Biolab (Aust) Pty LtdVictoriaAustralia

Personalised recommendations