First report of Fusarium foetens as a mycotoxin producer

  • Jesús M. González-Jartín
  • Amparo AlfonsoEmail author
  • María J. Sainz
  • Mercedes R. Vieytes
  • Olga Aguín
  • Vanesa Ferreiroa
  • Luis M. BotanaEmail author
Original Article


Fusarium foetens, a pathogen of Begonia plants, has been recently described as a new fungal species. This Fusarium species causes a destructive vascular wilt disease which leads to the death of the plant. Moreover, Fusarium species are known to produce a huge variety of secondary metabolites such as mycotoxins and phytotoxins. Here, we studied the toxicogenic profile of one F. foetens strain, isolated from maize, employing two methods based on the use of ultra-performance liquid chromatography coupled to mass spectrometry-ion trap-time of flight detection. The mycotoxins beauvericin and fusaric acid were detected in a pure culture of F. foetens. In addition, four fusaric acid analogs (10,11-dihidroxyfusaric acid, hydroxyfusaric acid, dehydrofusaric acid, and a hydroxylated unsaturated fusaric acid analog) were tentatively identified on the basis of their accurate mass and fragmentation patterns. Therefore, these preliminary data indicate that F. foetens isolated from maize is able to produce Fusarium mycotoxins including beauvericin and fusaric acid.


Fusarium foetens Fusaric acid Mycotoxin Begonia 



The research leading to these results has received funding from the following FEDER cofunded grants: from Conselleria de Cultura, Educacion e Ordenación Universitaria, Xunta de Galicia, 2017 GRC GI-1682 (ED431C 2017/01); from CDTI and Technological Funds, supported by Ministerio de Economía, Industria y Competitividad, AGL2014-58210-R, AGL2016-78728-R (AEI/FEDER, UE), ISCIII/PI16/01830, RTC-2016-5507-2, and ITC-20161072; from European Union POCTEP 0161-Nanoeaters-1-E-1, Interreg AlertoxNet EAPA-317-2016, Interreg Agritox EAPA-998-2018, and H2020 778069-EMERTOX. Jesús M. González-Jartín was supported by a fellowship from Programa de Formación de Profesorado Universitario (FPU14/00166), Ministerio de Educación, Cultura y Deporte, Spain.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The authors have full control of all primary data and allow the journal to review the data if requested.

Supplementary material

12550_2019_341_MOESM1_ESM.docx (50 kb)
ESM 1 (DOCX 49 kb)


  1. Burmeister HR, Grove MD, Peterson RE, Weisleder D, Plattner RD (1985) Isolation and characterization of two new fusaric acid analogs from Fusarium moniliforme NRRL 13,163. Appl Environ Microbiol 50:311–314Google Scholar
  2. Capasso R, Evidente A, Cutignano A, Vurro M, Zonno MC, Bottalico A (1996) Fusaric and 9,10-dehydrofusaric acids and their methyl esters from Fusarium nygamai. Phytochemistry 41:1035–1039. CrossRefGoogle Scholar
  3. Crutcher FK, Puckhaber LS, Bell AA, Liu J, Duke SE, Stipanovic RD, Nichols RL (2017) Detoxification of fusaric acid by the soil microbe Mucor rouxii. J Agric Food Chem 65:4989–4992. CrossRefGoogle Scholar
  4. Curir P, Guglieri L, Dolci M, Capponi A, Aurino G (2000) Fusaric acid production by Fusarium oxysporum f sp lilii and its role in the lily basal rot disease. Eur J Plant Pathol 106:849–856. CrossRefGoogle Scholar
  5. D’Mello JPF, Placinta CM, Macdonald AMC (1999) Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol 80:183–205. CrossRefGoogle Scholar
  6. EPPO (2013) PM 7/111 (1) Fusarium foetens. EPPO Bulletin 43:68–80. CrossRefGoogle Scholar
  7. Ferrer I, Thurman EM (2003) Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. TrAC Trends Anal Chem 22:750–756. CrossRefGoogle Scholar
  8. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240. CrossRefGoogle Scholar
  9. Gonzalez JM, Alfonso A, Sainz MJ, Botana LM (2016) Production and detection of the natural ionophore beauvericin. Planta Med 82:S1–S381. CrossRefGoogle Scholar
  10. Gonzalez-Jartin JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM (2017) UPLC-MS-IT-TOF identification of circumdatins produced by Aspergillus ochraceus. J Agric Food Chem 65:4843–4852. CrossRefGoogle Scholar
  11. Gonzalez-Jartin JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM (2018) Detection of new emerging type-A trichothecenes by untargeted mass spectrometry. Talanta 178:37–42. CrossRefGoogle Scholar
  12. Gruber-Dorninger C, Novak B, Nagl V, Berthiller F (2017) Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem 65:7052–7070. CrossRefGoogle Scholar
  13. Harvey RB, Edrington TS, Kubena LF, Elissalde MH, Casper HH, Rottinghaus GE, Turk JR (1996) Effects of dietary fumonisin B1-containing culture material, deoxynivalenol-contaminated wheat, or their combination on growing barrows. Am J Vet Res 57:1790–1794Google Scholar
  14. Huvenne H, Debode J, Maes M, Heungens K (2011) Real-time PCR mediated monitoring of Fusarium foetens in symptomatic and non-symptomatic hosts. Eur J Plant Pathol 131:705–717. CrossRefGoogle Scholar
  15. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406:1933–1943. CrossRefGoogle Scholar
  16. Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Prot Res 8:114–125Google Scholar
  17. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, New Jersey. CrossRefGoogle Scholar
  18. Li-Jun M, van der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373. CrossRefGoogle Scholar
  19. Löffler H, Mouris J (1992) Fusaric acid: phytotoxicity and in vitro production by Fusarium oxysporum f. sp. lilii, the causal agent of basal rot in lilies Netherlands. J Plant Pathol 98:107–115. Google Scholar
  20. Lopez-Diaz C, Rahjoo V, Sulyok M, Ghionna V, Martín-Vicente A, Capilla J, Di Pietro A, López- Berges MS (2018) Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Plant Pathol 19:440–453. CrossRefGoogle Scholar
  21. Munkvold GP (2017) Fusarium species and their associated mycotoxins. In: Moretti A, Susca A (eds) Mycotoxigenic fungi. Methods in molecular biology, vol 1542. Humana Press, New York, pp 51–106. CrossRefGoogle Scholar
  22. Nazari F, Sulyok M, Kobarfard F, Yazdanpanah H, Krska R (2015) Evaluation of emerging Fusarium mycotoxins beauvericin, enniatins, fusaproliferin and moniliformin in domestic rice in Iran. Iran J Pharm Res 14:505–512Google Scholar
  23. Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762. CrossRefGoogle Scholar
  24. O'Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97:7905–7910. CrossRefGoogle Scholar
  25. Rabie CJ, Marasas WFO, Thiel PG, Lübben A, Vleggaar R (1982) Moniliformin production and toxicity of different Fusarium species from Southern Africa. Appl Environ Microbiol 43:517–521Google Scholar
  26. Sainz MJ, Alfonso A, Botana LM (2015) Considerations about international mycotoxin legislation, food security, an climate change. In: Botana LM, Sainz MJ (eds) Climate change and mycotoxins. De Gruyter, Berlin, pp 153–173. Google Scholar
  27. Sainz MJ, Gonzalez-Jartin JM, Aguin O, Mansilla JP, Botana LM (2018) Isolation, characterization, and identification of mycotoxin-producing fungi. In: Botana LM (ed) Environmental toxicology. De Gruyter, Berlin, pp 203–245. Google Scholar
  28. Schroers HJ, Baayen RP, Meffert JP, de Gruyter J, Hooftman M, O'Donnell K (2004) Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 96:393–406. Google Scholar
  29. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270. CrossRefGoogle Scholar
  30. Smith JE, Solomons GL, Lewis CW, Anderson JG (1994) Mycotoxins in human nutrition and health. European Commission Directorate-General XII, BruxellesGoogle Scholar
  31. Smith TK, McMillan EG, Castillo JB (1997) Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J Anim Sci 75:2184–2191. CrossRefGoogle Scholar
  32. Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 4:788–809. CrossRefGoogle Scholar
  33. Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659. CrossRefGoogle Scholar
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefGoogle Scholar
  35. van der Gaag D, Raak M (2010) Pest risk assessment Fusarium foetens. Plant Protection Service, Ministry of Agriculture, Nature and Food Quality, The HagueGoogle Scholar
  36. Wu H-S, BW LD-Y, Ling N, Ying R-R, Raza W, Shen Q-R (2008) Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia 61:258–268. CrossRefGoogle Scholar
  37. Zhu Q, Zhang H, Duan Y, Chang S, Wei L, Li C, Miao H (2016) Identification of the toxin of sesame Fusarium wilt pathogen and its toxic effect on sesame seedlings. Plant Prot 42:27–33. Google Scholar
  38. Zonno MC, Vurro M, Capasso R, Evidente A, Cutignano A, Sauerborn J, Thomas H (1996) Phytotoxic metabolites produced by Fusarium nygamai from Striga hermonthica. In: Moran VC, Hoffmann (eds) Proceedings of the IX International Symposium on Biological Control of Weeds, University of Cape Town, South Africa, pp 223–226Google Scholar

Copyright information

© Society for Mycotoxin (Research Gesellschaft für Mykotoxinforschung e.V.) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jesús M. González-Jartín
    • 1
  • Amparo Alfonso
    • 1
    Email author
  • María J. Sainz
    • 2
  • Mercedes R. Vieytes
    • 3
  • Olga Aguín
    • 4
  • Vanesa Ferreiroa
    • 4
  • Luis M. Botana
    • 1
    Email author
  1. 1.Departamento de Farmacología, Facultad de VeterinariaUniversidade de Santiago de CompostelaLugoSpain
  2. 2.Departamento de Producción Vegetal y Proyectos de Ingeniería, Facultad de VeterinariaUniversidade de Santiago de CompostelaLugoSpain
  3. 3.Departamento de Fisiología, Facultad de VeterinariaUniversidade de Santiago de CompostelaLugoSpain
  4. 4.Estación Fitopatolóxica AreeiroDeputación de PontevedraPontevedraSpain

Personalised recommendations