Advertisement

In vitro characterization of hepatic toxicity of Alternaria toxins

  • Stefanie Hessel-Pras
  • Janine Kieshauer
  • Giana Roenn
  • Claudia Luckert
  • Albert Braeuning
  • Alfonso Lampen
Original Article
  • 64 Downloads

Abstract

Alternaria mycotoxins are secondary fungal metabolites which can contaminate food and feed. They are produced by Alternaria species with alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), and tentoxin (TEN) as the main representatives for Alternaria mycotoxins in food. Once passing the intestinal barrier, Alternaria toxins can reach the liver to exert yet uncharacterized molecular effects. Therefore, hepatic in vitro systems were used to examine selected Alternaria mycotoxins for their induction of metabolism-dependent cytotoxicity, phosphorylation of the histone H2AX as a surrogate marker for DNA double-strand breaks, and relevant marker genes for hepatotoxicity. Analysis of cell viability as well as the induction of H2AX phosphorylation in the hepatocarcinoma cell line HepG2 revealed a detoxification of 100 μmol/l AME and AOH by pre-treatment with S9 liver homogenate as shown by a decrease in cytotoxicity and H2AX histone phosphorylation to levels observed in control cells. Concentrations up to 100 μmol/l TeA and TEN did not induce H2AX phosphorylation whether metabolized or not. In the metabolically competent human hepatoma cell line HepaRG, no cytotoxicity of Alternaria toxins occurred even at high concentrations up to 100 μmol/l, which indicates a low cytotoxic potential. Induction of gene expression associated with liver toxicity was analyzed by quantitative real-time PCR using a specific hepatotoxicity PCR array in HepaRG cells: here, an evidence was found that 50 μmol/l of AOH, AME, TeA, and TEN might be associated with hepatotoxic effects, necrosis, and the development of diseases like cholestasis and phospholipidosis.

Keywords

Alternaria toxins Alternariol Monomethyl ether Tentoxin Tenuazonic acid Hepatotoxicity 

Abbreviations

AOH

Alternariol

AME

Alternariol monomethyl ether

b. w.

Body weight

CYP

Cytochrome P450 monooxygenase(s)

MTT

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

OA

Okadaic acid

TEN

Tentoxin

TeA

Tenuazonic acid

UGT

UDP-glucuronosyltransferase(s)

Notes

Acknowledgements

We would like to thank Horst Stefan Klaffke for the inspiring and motivating discussions and Corinna Genrich for her excellent technical support.

Source of funding

This work was supported by the German Federal Institute for Risk Assessment (grant numbers 51-006 and 1322-623).

Compliance with ethical standards

Experiments with animals for preparing rat S9 fraction were performed according to European laws and with consent of the responsible authority of the state of Berlin (Regional Office for Health and Social Affairs Berlin—LAGeSo), numbers H0256/02 (treatment of animals) and T0258/02 (killing of animals and removal of organs).

Conflict of interest

None.

Supplementary material

12550_2018_339_MOESM1_ESM.pdf (874 kb)
ESM 1 (PDF 873 kb)

References

  1. Aagaard MM, Siersbaek R, Mandrup S (2011) Molecular basis for gene-specific transactivation by nuclear receptors. Biochim Biophys Acta 1812:824–835.  https://doi.org/10.1016/j.bbadis.2010.12.018 CrossRefPubMedGoogle Scholar
  2. An Y, Zhao T, Miao J, Liu G, Zheng Y, Xu Y, Van Etten RL (1989) Isolation, identification, and mutagenicity of alternariol monomethyl ether. J Agric Food Chem 37:1341–1343.  https://doi.org/10.1021/jf00089a029 CrossRefGoogle Scholar
  3. Ando M, Yoshikawa K, Iwase Y, Ishiura S (2014) Usefulness of monitoring gamma-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. J Biomol Screen 19:1246–1254.  https://doi.org/10.1177/1087057114541147 CrossRefPubMedGoogle Scholar
  4. Aninat C, Piton A, Glaise D, le Charpentier T, Langouët S, Morel F, Guguen-Guillouzo C, Guillouzo A (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos 34:75–83CrossRefGoogle Scholar
  5. Banáth JP, Olive PL (2003) Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res 63:4347–4350PubMedGoogle Scholar
  6. Barkai-Golan R (2008) Chapter 8 - Alternaria mycotoxins. In: Mycotoxins in fruits and vegetables. Academic Press, San Diego, pp 185–203.  https://doi.org/10.1016/B978-0-12-374126-4.00008-5 CrossRefGoogle Scholar
  7. Burkhardt B, Pfeiffer E, Metzler M (2009) Absorption and metabolism of the mycotoxins alternariol and alternariol-9-methyl ether in Caco-2 cells in vitro. Mycotoxin Res 25:149–157.  https://doi.org/10.1007/s12550-009-0022-2 CrossRefPubMedGoogle Scholar
  8. Burkhardt B, Wittenauer J, Pfeiffer E, Schauer UM, Metzler M (2011) Oxidative metabolism of the mycotoxins alternariol and alternariol-9-methyl ether in precision-cut rat liver slices in vitro. Mol Nutr Food Res 55:1079–1086.  https://doi.org/10.1002/mnfr.201000487 CrossRefPubMedGoogle Scholar
  9. Cuperus FJ, Claudel T, Gautherot J, Halilbasic E, Trauner M (2014) The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos: Biol Fate Chem 42:546–560.  https://doi.org/10.1124/dmd.113.056358
  10. Delaforge M et al (1997) Metabolism of tentoxin by hepatic cytochrome P-450 3A isozymes. Eur J Biochem 250:150–157.  https://doi.org/10.1111/j.1432-1033.1997.00150.x CrossRefPubMedGoogle Scholar
  11. Dellafiora L, Warth B, Schmidt V, Del Favero G, Mikula H, Frohlich J, Marko D (2018) An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chem 248:253–261.  https://doi.org/10.1016/j.foodchem.2017.12.013 CrossRefPubMedGoogle Scholar
  12. EFSA (2011) Alternaria toxins in feed and food. EFSA J 9:97.  https://doi.org/10.2903/j.efsa.2011.2407 CrossRefGoogle Scholar
  13. EFSA (2016) Dietary exposure to Alternaria toxins. EFSA J 14:32.  https://doi.org/10.2903/j.efsa.2016.4654 CrossRefGoogle Scholar
  14. Escrivá L, Oueslati S, Font G, Manyes L (2017) Alternaria mycotoxins in food and feed: an overview. J Food Qual 2017:20–20.  https://doi.org/10.1155/2017/1569748 CrossRefGoogle Scholar
  15. Fehr M, Pahlke G, Fritz J, Christensen MO, Boege F, Altemöller M, Podlech J, Marko D (2009) Alternariol acts as a topoisomerase poison, preferentially affecting the IIalpha isoform. Mol Nutr Food Res 53:441–451.  https://doi.org/10.1002/mnfr.200700379 CrossRefPubMedGoogle Scholar
  16. Fernández-Blanco C, Font G, Ruiz M-J (2016) Role of quercetin on Caco-2 cells against cytotoxic effects of alternariol and alternariol monomethyl ether. Food Chem Toxicol 89:60–66.  https://doi.org/10.1016/j.fct.2016.01.011 CrossRefPubMedGoogle Scholar
  17. Fernandez-Blanco C, Juan-Garcia A, Juan C, Font G, Ruiz MJ (2016) Alternariol induce toxicity via cell death and mitochondrial damage on Caco-2 cells. Food Chem Toxicol 88:32–39.  https://doi.org/10.1016/j.fct.2015.11.022 CrossRefPubMedGoogle Scholar
  18. Fraeyman S, Devreese M, Broekaert N, de Mil T, Antonissen G, de Baere S, de Backer P, Rychlik M, Croubels S (2015) Quantitative determination of tenuazonic acid in pig and broiler chicken plasma by LC-MS/MS and its comparative toxicokinetics. J Agric Food Chem 63:8560–8567.  https://doi.org/10.1021/acs.jafc.5b02828 CrossRefPubMedGoogle Scholar
  19. Fraeyman S, Croubels S, Devreese M, Antonissen G (2017) Emerging fusarium and Alternaria mycotoxins: occurrence, Toxicity and Toxicokinetics. Toxins 9:228–257.  https://doi.org/10.3390/toxins9070228
  20. Frizzell C, Ndossi D, Kalayou S, Eriksen GS, Verhaegen S, Sørlie M, Elliott CT, Ropstad E, Connolly L (2013) An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol. Toxicol Appl Pharmacol 271:64–71.  https://doi.org/10.1016/j.taap.2013.05.002 CrossRefPubMedGoogle Scholar
  21. Fuchs C, Claudel T, Trauner M (2013) Bile acid-mediated control of liver triglycerides. Semin Liver Dis 33:330–342.  https://doi.org/10.1055/s-0033-1358520 CrossRefPubMedGoogle Scholar
  22. Garcia-Tevijano ER et al (2001) Hyperhomocysteinemia in liver cirrhosis: mechanisms and role in vascular and hepatic fibrosis. Hypertension (Dallas, TX: 1979) 38:1217–1221CrossRefGoogle Scholar
  23. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530.  https://doi.org/10.1007/s00204-013-1078-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Griffin GF, Chu FS (1983) Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Appl Environ Microbiol 46:1420–1422PubMedPubMedCentralGoogle Scholar
  25. Grover S, Lawrence CB (2017) The Alternaria alternata mycotoxin alternariol suppresses lipopolysaccharide-induced inflammation Int J Mol Sci 18. doi: https://doi.org/10.3390/ijms18071577
  26. Halilbasic E, Claudel T, Trauner M (2013) Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 58:155–168.  https://doi.org/10.1016/j.jhep.2012.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Juan-García A, Juan C, Manyes L, Ruiz M-J (2016) Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: toxic effects and evaluation of degradation products. Toxicol in Vitro 34:264–273.  https://doi.org/10.1016/j.tiv.2016.04.016 CrossRefPubMedGoogle Scholar
  28. Kanebratt KP, Andersson TB (2008) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos: Biol Fate Chem 36:1444–1452.  https://doi.org/10.1124/dmd.107.020016
  29. Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175:4427–4435CrossRefGoogle Scholar
  30. Kolrep F, Hessel S, These A, Ehlers A, Rein K, Lampen A (2016) Differences in metabolism of the marine biotoxin okadaic acid by human and rat cytochrome P450 monooxygenases. Arch Toxicol 90:2025–2036.  https://doi.org/10.1007/s00204-015-1591-9 CrossRefPubMedGoogle Scholar
  31. Kolrep F, Rein K, Lampen A, Hessel-Pras S (2017) Metabolism of okadaic acid by NADPH-dependent enzymes present in human or rat liver S9 fractions results in different toxic effects. Toxicol in Vitro 42:161–170.  https://doi.org/10.1016/j.tiv.2017.04.009 CrossRefPubMedGoogle Scholar
  32. Kutter E (2001) Topoisomerases A2 - Brenner, Sydney. In: Miller JH (ed) Encyclopedia of genetics. Academic Press, New York, p 1970.  https://doi.org/10.1006/rwgn.2001.1295 CrossRefGoogle Scholar
  33. Lee HB, Patriarca A, Magan N (2015) Erratum: Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycobiology 43:371–371.  https://doi.org/10.5941/MYCO.2015.43.3.371 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lehmann L, Wagner J, Metzler M (2006) Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. Food Chem Toxicol 44:398–408.  https://doi.org/10.1016/j.fct.2005.08.013 CrossRefPubMedGoogle Scholar
  35. Liu GT, Qian YZ, Zhang P, Dong WH, Qi YM, Guo HT (1992) Etiological role of Alternaria alternata in human esophageal cancer. Chin Med J 105:394–400PubMedGoogle Scholar
  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25:402–408.  https://doi.org/10.1006/meth.2001.1262
  37. Lou J, Fu L, Peng Y, Zhou L (2013) Metabolites from Alternaria fungi and their bioactivities. Molecules 18:5891–5935.  https://doi.org/10.3390/molecules18055891 CrossRefPubMedGoogle Scholar
  38. Oude Elferink RP, Paulusma CC, Groen AK (2006) Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 130:908–925.  https://doi.org/10.1053/j.gastro.2005.08.052 CrossRefPubMedGoogle Scholar
  39. Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296.  https://doi.org/10.1093/bioinformatics/19.2.295 CrossRefPubMedGoogle Scholar
  40. Pfeiffer E, Eschbach S, Metzler M (2007) Alternaria toxins: DNA strand-breaking activity in mammalian cellsin vitro. Mycotoxin Res 23:152–157.  https://doi.org/10.1007/bf02951512 CrossRefPubMedGoogle Scholar
  41. Pfeiffer E, Burkhardt B, Altemoller M, Podlech J, Metzler M (2008) Activities of human recombinant cytochrome P450 isoforms and human hepatic microsomes for the hydroxylation ofAlternaria toxins. Mycotoxin Res 24:117–123.  https://doi.org/10.1007/bf03032337 CrossRefPubMedGoogle Scholar
  42. Pfeiffer E, Schmit C, Burkhardt B, Altemöller M, Podlech J, Metzler M (2009) Glucuronidation of the mycotoxins alternariol and alternariol-9-methyl ether in vitro: chemical structures of glucuronides and activities of human UDP-glucuronosyltransferase isoforms. Mycotoxin Res 25:3–10.  https://doi.org/10.1007/s12550-008-0001-z CrossRefPubMedGoogle Scholar
  43. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390–9395CrossRefGoogle Scholar
  44. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedPubMedCentralGoogle Scholar
  45. Schrader TJ, Cherry W, Soper K, Langlois I (2006) Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro. Mutat Res 606:61–71.  https://doi.org/10.1016/j.mrgentox.2006.02.008 CrossRefPubMedGoogle Scholar
  46. Schuchardt S, Ziemann C, Hansen T (2014) Combined toxicokinetic and in vivo genotoxicity study on Alternaria toxins. EFSA Supporting Publications EN-679:130Google Scholar
  47. Shigeura HT, Gordon CN (1963) The biological activity of Tenuazonic acid. Biochemistry 2:1132–1137.  https://doi.org/10.1021/bi00905a039 CrossRefPubMedGoogle Scholar
  48. Solhaug A, Vines LL, Ivanova L, Spilsberg B, Holme JA, Pestka J, Collins A, Eriksen GS (2012) Mechanisms involved in alternariol-induced cell cycle arrest. Mutat Res 738-739:1–11.  https://doi.org/10.1016/j.mrfmmm.2012.09.001 CrossRefPubMedGoogle Scholar
  49. Solhaug A, Eriksen GS, Holme JA (2016) Mechanisms of action and toxicity of the mycotoxin Alternariol: a review. Basic Clin Pharmacol Toxicol 119:533–539.  https://doi.org/10.1111/bcpt.12635 CrossRefPubMedGoogle Scholar
  50. Tiessen C, Ellmer D, Mikula H, Pahlke G, Warth B, Gehrke H, Zimmermann K, Heiss E, Fröhlich J, Marko D (2017) Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Arch Toxicol 91:1213–1226.  https://doi.org/10.1007/s00204-016-1801-0 CrossRefPubMedGoogle Scholar
  51. Vejdovszky K, Hahn K, Braun D, Warth B, Marko D (2017) Synergistic estrogenic effects of fusarium and Alternaria mycotoxins in vitro. Arch Toxicol 91:1447–1460.  https://doi.org/10.1007/s00204-016-1795-7 CrossRefPubMedGoogle Scholar
  52. Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51:565–580.  https://doi.org/10.1016/j.jhep.2009.05.012 CrossRefPubMedGoogle Scholar
  53. Wen L, Liu L, Wen L, Yu T, Wei F (2018) Artesunate promotes G2/M cell cycle arrest in MCF7 breast cancer cells through ATM activation. Breast Cancer 25:681–686.  https://doi.org/10.1007/s12282-018-0873-5 CrossRefPubMedGoogle Scholar
  54. Yekeler H, Bitmis K, Ozcelik N, Doymaz MZ, Calta M (2001) Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy. Toxicol Pathol 29:492–497.  https://doi.org/10.1080/01926230152499980 CrossRefPubMedGoogle Scholar
  55. Zhen YZ et al. (1991) Mutagenicity of Alternaria alternata and penicillium cyclopium isolated from grains in an area of high incidence of oesophageal cancer-Linxian, China. IARC Sci Publ:253–257Google Scholar

Copyright information

© Society for Mycotoxin (Research Gesellschaft für Mykotoxinforschung e.V.) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food SafetyGerman Federal Institute for Risk AssessmentBerlinGermany

Personalised recommendations