Advertisement

Mycotoxin Research

, Volume 34, Issue 4, pp 297–305 | Cite as

Biological activity of Claviceps gigantea in juvenile New Zealand rabbits

  • Alma Rosa Solano-Báez
  • Juan Manuel Cuca-García
  • Adriana Delgado-Alvarado
  • Daniel Panaccione
  • Carlos De León-García de Alba
  • Santos Gerardo Leyva-Mir
  • Jesús Ricardo Sánchez-Pale
  • Javier Hernández-Morales
Original Article
  • 87 Downloads

Abstract

The Ascomycete fungus Claviceps gigantea infects maize kernels and synthetizes several alkaloids, mostly dihydrolysergamides. There is limited information on the damage these toxins cause in mammals, despite reports from infested areas with 90% presence of the fungus sclerotia. With this background, it was decided to determine the biological activity of chemical compounds present in sclerotia of C. gigantea in rabbits 38 days after weaning. Sclerotia of C. gigantea were collected in fields with high incidence of the disease, ground and analysed for nutrients. Experimental diets were prepared with four treatments, where sclerotial powder was added, substituting for alfalfa flour in increasing proportions [C. gigantea/alfalfa flour (0:100, 5:95, 15:85 and 25:75)]. Total ergot alkaloid content was analysed by high-performance liquid chromatography. Male juvenile rabbits were utilised and distributed in completely randomised design with four replications. Initial weight was recorded in each animal, and experimental diet was offered. In this study, weight of animals, feed consumption and feed conversion were evaluated in individual animals. Blood samples were taken for haemograms, and finally euthanasia was practiced. The consumption of C. gigantea had a negative effect on body weight and feed consumption. The necropsies showed anomalies proportional to the consumption of feed contaminated with the fungus.

Keywords

Ergot-maize Ergot-nutrients Clavines Ergot-juvenile rabbits 

Notes

Acknowledgments

The first author thanks the National Council on Science and Technology (CONACYT) for scholarship 214704.

We thank Dr. Ernesto Avila González for amino acid analysis and facilities for pelleting, Morislav Flieger for facilities on HPLC analysis and M. Sc Guillermo Márquez Licona for technical assistance during this research.

Compliance with ethical standards

The authors have no financial relationship with CONACYT funding agency.

Conflict of interest

None.

References

  1. A.O.A.C (1995) Official Methods of Analysis of the Association of Official Agricultural Chemists. 16th. Assoc. Official Agric. Chem. Washington, D.C. USAGoogle Scholar
  2. Adamo G, Constanza A (2013) Rabbits; biology, diet and eating habits and disorders. Nova science Publ., Inc. New York USAGoogle Scholar
  3. Agurell SL (1965) A new ergot alkaloid from Mexican maize ergot. Acta Pharm Suecica 2:231–238  https://doi.org/10.1055/s-0028-1100254 Google Scholar
  4. Bragg EP, Maust MD, Panaccione DG (2017) Ergot alkaloids biosynthesis in the maize (Zea mays) ergot fungus Claviceps gigantea. J Agric Food Chem 65:10703–10710  https://doi.org/10.1021/acs.jafc.7b=4272 CrossRefPubMedGoogle Scholar
  5. Canty MJU, Fogarty M, Sheridan KS, Ensley SD, Schrunk E, More SJ (2014) Ergot alkaloids intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland? Irish Vet J 67:1–7.  https://doi.org/10.1186/2046-0481-67-21 CrossRefGoogle Scholar
  6. Cuca GM, Ávila GE, Pro AM (2009) Alimentación de las aves. Ed. Dpto. de Zootecnia, Univ. Autón. Chapingo. MéxicoGoogle Scholar
  7. Eich E, Eichberg D, Müller WE (1984) Clavines new antibiotics with cytostatic activity. Biochem Pharmacol 33:523–526.  https://doi.org/10.1016/0006-2952(84)90301-0 CrossRefPubMedGoogle Scholar
  8. Flieger M, Sedmera P, Havlíček V, Cvak L, Stuchlík J (1993) 10- Hydroxi-cis- and 10 Hydroxy- trans- paspalic acid amide: new alkaloids from Claviceps paspali. J Nat Prod 56(6):810–814  https://doi.org/10.1021/np50096a002 CrossRefGoogle Scholar
  9. Fučíkovský ZL, Moreno MP (1968) Efecto de los esclerocios de Claviceps gigantea en conejos. Informe anual de labores y resultados de la sección de fitopatología. Campo Exp. “Sta. Elena” MéxicoGoogle Scholar
  10. Fučíkovský ZL, Cuca MG, Ávila E (1967) Notas preliminares sobre Claviceps gigantea y su efecto en pollos. Mem. V Cong. Nal. Fitopatol, MéxicoGoogle Scholar
  11. Korn AK, Gross ME, Usleber EN, Köhler TK, Erhardt G (2014) Dietary ergot alkaloids as a possible cause of tail necrosis in rabbits. Mycot Res 30:241–250  https://doi.org/10.1007/s12550-014-0208-0 CrossRefGoogle Scholar
  12. Kren V, Ladiskav C (2006) Ergot; the genus claviceps. Howart academic publishers The Netherlands.  https://doi.org/10.1201/9780203304198 CrossRefGoogle Scholar
  13. Loera-Chaves M, García-García F, Millan-García S (2016) Enciclopedia de los Municipios y Delegaciones de México: Edo. de México Calimaya. http://www.inafed.gob.mx/work/enciclopedia/EMM15mexico/municipios/15018a.html. Accessed 8 Feb 2017
  14. Mantle PG, Waight ES (1968) Dihydroergosine: a new naturally occurring alkaloid from sclerotia of Sphacelia sorghi (McRae) Nature:218Google Scholar
  15. Márquez AV, Ávila E (1973) Toxicidad del hongo del maíz Claviceps gigantea en pollos en crecimiento. Téc Pec 1:69–71Google Scholar
  16. Moreno-Manzano C, De León-García de Alba C, Nava-Díaz C, Sánchez-Pale R (2016) Sclerotial germination and ascospore formation of Claviceps gigantea Fuentes, De la Isla, Ullstrup and Rodriguez. Rev Mex Fitopatol 34:233–241.  https://doi.org/10.18781/r.mex.fit.1603-2 CrossRefGoogle Scholar
  17. Naudè TW, Botha CJ, Vorster JH, Roux C, Van Der Linde EJ, Van Der Walt SI, Rottinghaus GE, Van Jaarsveld L, Lawrence AN (2005) Claviceps cyperi, a new cause of severe ergotism in dairy cattle consuming maize silage and teff hay contaminated with ergotised Cyperus esculentus (nut sedge) on the Highveld of South Africa. Onderstepoort J Vet Res 72:23–37  https://doi.org/10.4102/ojvr.v72i1.221 CrossRefPubMedGoogle Scholar
  18. Orengo J, Gidenne T (2007) Feeding behaviour and caecotrophy in the young rabbit before weaning: an approach by analysing the digestive contents. Appl Anim Behav Sci 102(1-2):106–118.  https://doi.org/10.1016/j.applanim.2006.03.010 CrossRefGoogle Scholar
  19. Palma OR, Hurtado EA (2010) Comportamiento productivo de Conejos durante el periodo de crecimiento-engorde alimentados con frutos de mango (Manguifera inidica) en sustituto parcial del alimento balanceado comercial. IDESIA 28:33–37  https://doi.org/10.4067/S0718-34292010000100005 CrossRefGoogle Scholar
  20. Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne) J. Agric Food Chem 54:4582–4587  https://doi.org/10.1021/jf060626u CrossRefGoogle Scholar
  21. Pažoutová S (2001) The phylogeny and evolution of the genus Claviceps. Mycol Res 105(3):275–283.  https://doi.org/10.1017/S0953756201003562 CrossRefGoogle Scholar
  22. Pažoutová S (2002) The evolutionary strategy of Claviceps. In: White JF, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) Clavicipitalean fungi: evolutionary biology chemistry, biocontrol, and cultural impacts. Marcel Denkker, Inc, New York, pp 329–354Google Scholar
  23. Riet-Correa F, Rivero R, Odriozola E, Adrien ML, Medeiros RMT, Schild AL (2013) Mycotoxicoses of rumiants and horses. J Vet Diagn Investig 25(6):692–708  https://doi.org/10.1177/1040638713504572 CrossRefGoogle Scholar
  24. Robinson SL, Panaccione DG (2015) Diversification of ergot alkaloids in natural and modified fungi. Toxin 7:201–218  https://doi.org/10.3390/toxins7010201 CrossRefGoogle Scholar
  25. SAS Institute (2003) Statistical analysis system institute. The SAS system for windows release 8.0 USA. Pp. 558Google Scholar
  26. Sauvant D, Perez JM, Tran G, Ponter A (2004) Tables of composition and nutritional value of feed materials. 2ed. Wageningen academic publishers. The NetherlandsGoogle Scholar
  27. Schumann B, Dänicke S, Hübner S, Ueberschär KH, Meyer U (2007) Effects of different levels of ergot in concentrate on the health and performance of male calves. Mycot. Res. 23(1):43–55  https://doi.org/10.1007/BF02946024 CrossRefGoogle Scholar
  28. Shelby R (2006) Toxicology of ergot alakloids in agriculture. In Kren V, Ladiskav C. Ergot; the genus Claviceps . Howart Acad. Publ. The Netherlands 499 p.  https://doi.org/10.1201/9780203304198 Google Scholar
  29. Ullstrup AJ (1973) Maize ergot: a disease with a restricted ecological niche. PANS 19(3):389–390  https://doi.org/10.1080/09670877309412786 Google Scholar
  30. Verde MT, Gómez J (1997) Parámetros sanguíneos de interés clínico normales. Informe Técnico Bol Cunicul 38:38–45Google Scholar
  31. White JF, Bacon CW, Hywel-Jones NL, Spatafora JW (2003) Clavicipitalean fungi evolutionary biology, chemistry, biocontrol, and cultural impacts. In: Clavicipitalean fungi: evolutionary biology chemistry, biocontrol, and cultural impacts. Marcel Denkker, Inc, New York, pp 329–354CrossRefGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alma Rosa Solano-Báez
    • 1
  • Juan Manuel Cuca-García
    • 1
  • Adriana Delgado-Alvarado
    • 2
  • Daniel Panaccione
    • 3
  • Carlos De León-García de Alba
    • 1
  • Santos Gerardo Leyva-Mir
    • 4
  • Jesús Ricardo Sánchez-Pale
    • 5
  • Javier Hernández-Morales
    • 1
  1. 1.Colegio de Postgraduados, Campus Montecillo, Plant PathologyTexcocoMexico
  2. 2.Colegio de Postgraduados, Campus Puebla, Strategies for Regional Agricultural DevelopmentPueblaMexico
  3. 3.Division of Plant and Soil Sciences, Genetic and Developmental Biology ProgramWest Virginia UniversityMorgantownUSA
  4. 4.Departamento de Parasitología AgrícolaUniversidad Autónoma ChapingoTexcocoMexico
  5. 5.Univ. Autónoma del Estado de Mexico, Campus El cerillo, Facultad de Ciencias AgrícolasTolucaMexico

Personalised recommendations