Advertisement

Mycotoxin Research

, Volume 34, Issue 4, pp 269–278 | Cite as

Interactions of zearalenone and its reduced metabolites α-zearalenol and β-zearalenol with serum albumins: species differences, binding sites, and thermodynamics

  • Zelma Faisal
  • Beáta Lemli
  • Dénes Szerencsés
  • Sándor Kunsági-Máté
  • Mónika Bálint
  • Csaba Hetényi
  • Mónika Kuzma
  • Mátyás Mayer
  • Miklós Poór
Original Article

Abstract

Zearalenone (ZEN) is a mycotoxin produced by Fusarium species. ZEN mainly appears in cereals and related foodstuffs, causing reproductive disorders in animals, due to its xenoestrogenic effects. The main reduced metabolites of ZEN are α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL). Similarly to ZEN, ZELs can also activate estrogen receptors; moreover, α-ZEL is the most potent endocrine disruptor among these three compounds. Serum albumin is the most abundant plasma protein in the circulation; it affects the tissue distribution and elimination of several drugs and xenobiotics. Although ZEN binds to albumin with high affinity, albumin-binding of α-ZEL and β-ZEL has not been investigated. In this study, the complex formation of ZEN, α-ZEL, and β-ZEL with human (HSA), bovine (BSA), porcine (PSA), and rat serum albumins (RSA) was investigated by fluorescence spectroscopy, affinity chromatography, thermodynamic studies, and molecular modeling. Our main observations are as follows: (1) ZEN binds with higher affinity to albumins than α-ZEL and β-ZEL. (2) The low binding affinity of β-ZEL toward albumin may result from its different binding position or binding site. (3) The binding constants of the mycotoxin-albumin complexes significantly vary with the species. (4) From the thermodynamic point of view, the formation of ZEN-HSA and ZEN-RSA complexes are similar, while the formation of ZEN-BSA and ZEN-PSA complexes are markedly different. These results suggest that the toxicological relevance of ZEN-albumin and ZEL-albumin interactions may also be species-dependent.

Keywords

Zearalenone Zearalenols Serum albumin Species-dependent alternations Fluorescence spectroscopy 

Notes

Acknowledgements

This project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (M.P.). M.P. is thankful for support of the University of Pécs for grant in the frame of Pharmaceutical Talent Centre program. This work was supported by the GINOP-2.3.2-15-2016-00049 grant. We acknowledge a grant of computer time from CSCS Swiss National Supercomputing Centre, and NIIF Hungarian National Information Infrastructure Development Institute. We acknowledge that the results of this research have been achieved using the DECI resource Archer based in the UK at the National Supercomputing Service with support from the PRACE aisbl. M.B. and C.H. are thankful to the University of Pécs for the grant in the frame of “Supporting Individual Research and Innovation Activity of Young Researchers, 2018” program.

Source of funding

This project was supported by the Hungarian National Research, Development and Innovation Office (FK125166) (M.P.). The work of M.B. and C.H. is supported by the Hungarian National Research, Development and Innovation Office (K123836).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. We have full control of all primary data and we agree to allow the journal to review our data if requested.

Supplementary material

12550_2018_321_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2834 kb)

References

  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25.  https://doi.org/10.1016/j.softx.2015.06.001 CrossRefGoogle Scholar
  2. Chruszcz M, Mikolajczak K, Mank N, Majorek KA, Porebski PJ, Minor W (2013) Serum albumins—unusual allergens. Biochim Biophys Acta 1830:5375–5381.  https://doi.org/10.1016/j.bbagen.2013.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  3. European Food Safety Authority (EFSA) (2017) Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 15:4851.  https://doi.org/10.2903/j.efsa.2017.4851 CrossRefGoogle Scholar
  4. Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Asp Med 33:209–290.  https://doi.org/10.1016/j.mam.2011.12.002 CrossRefGoogle Scholar
  5. Filannino A, Stout TA, Gadella BM, Sostaric E, Pizzi F, Colenbrander B, Dell'Aquila ME, Minervini F (2011) Dose-response effects of estrogenic mycotoxins (zearalenone, alpha- and beta-zearalenol) on motility, hyperactivation and the acrosome reaction of stallion sperm. Reprod Biol Endocrinol 9:134.  https://doi.org/10.1186/1477-7827-9-134 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fleck SC, Churchwell MI, Doerge DR (2017) Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food Chem Toxicol 106:193–201.  https://doi.org/10.1016/j.fct.2017.05.048 CrossRefPubMedGoogle Scholar
  7. Frizzell C, Ndossi D, Verhaegen S, Dahl E, Eriksen G, Sørlie M, Ropstad E, Muller M, Elliott CT, Connolly L (2011) Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol Lett 206:210–217.  https://doi.org/10.1016/j.toxlet.2011.07.015 CrossRefPubMedGoogle Scholar
  8. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43:1739–1753.  https://doi.org/10.1016/0039-9140(96)01958-3 CrossRefPubMedGoogle Scholar
  9. Hetényi C, van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737.  https://doi.org/10.1110/ps.0202302 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hetényi C, van der Spoel D (2006) Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 580:1447–1450.  https://doi.org/10.1016/j.febslet.2006.01.074 CrossRefPubMedGoogle Scholar
  11. Hetényi C, van der Spoel D (2011) Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Protein Sci 20:880–893.  https://doi.org/10.1002/pro.618 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huang LC, Zheng N, Zheng BQ, Wen F, Cheng JB, Han RW, Xu XM, Li SL, Wang JQ (2014) Simultaneous determination of aflatoxin M1, ochratoxin A, zearalenone and α-zearalenol in milk by UHPLC-MS/MS. Food Chem 146:242–249.  https://doi.org/10.1016/j.foodchem.2013.09.047 CrossRefPubMedGoogle Scholar
  13. Kaspchak E, Mafra LI, Mafra MR (2018) Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility. Food Chem 252:1–8.  https://doi.org/10.1016/j.foodchem.2018.01.089 CrossRefPubMedGoogle Scholar
  14. Kőszegi T, Poór M (2016) Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins 8:111.  https://doi.org/10.3390/toxins8040111 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li Y, Wang H, Jia B, Liu C, Liu K, Qi Y, Hu Z (2013) Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling. Food Addit Contam Part A 30:356–364.  https://doi.org/10.1080/19440049.2012.742573 CrossRefGoogle Scholar
  16. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958.  https://doi.org/10.1002/prot.22711 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ma L, Maragos CM, Zhang Y (2018) Interaction of zearalenone with bovine serum albumin as determined by fluorescence quenching. Mycotoxin Res 34:39–48.  https://doi.org/10.1007/s12550-017-0297-7 CrossRefPubMedGoogle Scholar
  18. Maragos CM (2010) Zearalenone occurrence and human exposure. World Mycotoxin J 3:369–383.  https://doi.org/10.3920/WMJ2010.1240 CrossRefGoogle Scholar
  19. Minervini F, Dell’Aquila ME (2008) Zearalenone and reproductive function in farm animals. Int J Mol Sci 9:2570–2584.  https://doi.org/10.3390/ijms9122570 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791.  https://doi.org/10.1002/jcc.21256 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Perry JL, Il’ichev YV, Kempf VR, McClendon J, Park G, Manderville RA, Rüker F, Dockal M, Simon JD (2003) Binding of ochratoxin A derivatives to human serum albumin. J Phys Chem B 107:6644–6647.  https://doi.org/10.1021/jp034284w CrossRefGoogle Scholar
  22. Poór M, Kunsági-Máté S, Bencsik T, Petrik J, Vladimir-Kneževic S, Kőszegi T (2012) Flavonoid aglycones can compete with ochratoxin A for human serum albumin: a new possible mode of action. Int J Biol Macromol 51:279–283.  https://doi.org/10.1016/j.ijbiomac.2012.05.019 CrossRefPubMedGoogle Scholar
  23. Poór M, Li Y, Matisz G, Kiss L, Kunsági-Máté S, Kőszegi T (2014) Quantitation of species differences in albumin-ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: a test case with some Sudlow's site I ligands. J Lumin 145:767–773.  https://doi.org/10.1016/j.jlumin.2013.08.059 CrossRefGoogle Scholar
  24. Poór M, Lemli B, Bálint M, Hetényi C, Sali N, Kőszegi T, Kunsági-Máté S (2015) Interaction of citrinin with human serum albumin. Toxins 7:5155–5166.  https://doi.org/10.3390/toxins7124871 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Poór M, Bálint M, Hetényi C, Gődér B, Kunsági-Máté S, Kőszegi T, Lemli B (2017a) Investigation of non-covalent interactions of aflatoxins (B1, B2, G1, G2, and M1) with serum albumin. Toxins 9:339.  https://doi.org/10.3390/toxins9110339 CrossRefPubMedCentralGoogle Scholar
  26. Poór M, Kunsági-Máté S, Bálint M, Hetényi C, Gerner Z, Lemli B (2017b) Interaction of mycotoxin zearalenone with human serum albumin. J Photochem Photobiol B 170:16–24.  https://doi.org/10.1016/j.jphotobiol.2015.07.009 CrossRefPubMedGoogle Scholar
  27. Poór M, Boda G, Kunsági-Máté S, Needs PW, Kroon PA, Lemli B (2018) Fluorescence spectroscopic evaluation of the interactions of quercetin, isorhamnetin, and quercetin-3′-sulfate with different albumins. J Lumin 194:156–163.  https://doi.org/10.1016/j.jlumin.2017.10.024 CrossRefGoogle Scholar
  28. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102.  https://doi.org/10.1021/bi00514a017 CrossRefPubMedGoogle Scholar
  29. Schollenberger M, Müller HM, Rüfle M, Suchy S, Plank S, Drochner W (2006) Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161:43–52.  https://doi.org/10.1007/s11046-005-0199-7 CrossRefPubMedGoogle Scholar
  30. Schrödinger LLC (2013) Schrödinger release 2013–3: SiteMap, Version 2.9. Schrödinger, LLC, New YorkGoogle Scholar
  31. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 39:1435–1438.  https://doi.org/10.1016/S0041-0101(00)00259-2 CrossRefPubMedGoogle Scholar
  32. Stewart JJ (1990) MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 4(1):105CrossRefGoogle Scholar
  33. Sueck F, Poór M, Faisal Z, Gertzen CGW, Cramer B, Lemli B, Kunsági-Máté S, Gohlke H, Humpf HU (2018) Interaction of ochratoxin A and its thermal degradation product 2'R-ochratoxin A with human serum albumin. Toxins 10:E256.  https://doi.org/10.3390/toxins10070256 CrossRefPubMedGoogle Scholar
  34. Yamasaki K, Chuang VT, Maruyama T, Otagiri M (2013) Albumin-drug interaction and its clinical implication. Biochim Biophys Acta 1830:5435–5443.  https://doi.org/10.1016/j.bbagen.2013.05.005 CrossRefPubMedGoogle Scholar
  35. Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9:2062–2090.  https://doi.org/10.3390/ijms9112062 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yuqin L, Guirong Y, Zhen Y, Caihong L, Baoxiu J, Jiao C, Yurong G (2014) Investigation of the interaction between patulin and human serum albumin by a spectroscopic method, atomic force microscopy, and molecular modeling. Biomed Res Int 2014:734850.  https://doi.org/10.1155/2014/734850 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zsila F (2013) Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm 10:1668–1682.  https://doi.org/10.1021/mp400027q CrossRefPubMedGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zelma Faisal
    • 1
    • 2
  • Beáta Lemli
    • 2
    • 3
    • 4
  • Dénes Szerencsés
    • 3
  • Sándor Kunsági-Máté
    • 2
    • 3
    • 4
  • Mónika Bálint
    • 5
  • Csaba Hetényi
    • 5
  • Mónika Kuzma
    • 6
  • Mátyás Mayer
    • 6
  • Miklós Poór
    • 1
    • 2
  1. 1.Department of Pharmacology, Faculty of PharmacyUniversity of PécsPécsHungary
  2. 2.János Szentágothai Research CenterPécsHungary
  3. 3.Department of General and Physical Chemistry, Faculty of SciencesUniversity of PécsPécsHungary
  4. 4.Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of PécsPécsHungary
  5. 5.Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
  6. 6.Department of Forensic Medicine, Medical SchoolUniversity of PécsPécsHungary

Personalised recommendations